
Work-in-Progress: Northcape: Embedded Real-Time Capability-Based
Addressing

Eric Ackermann, Noah Mauthe, Sven Bugiel
CISPA Helmholtz Center for Information Security and Saarland University, Saarbrücken, Germany

{eric.ackermann,noah.mauthe,sven.bugiel}@cispa.de

Abstract—Direct Memory Access (DMA) increases through-
put and efficiency of transfers between I/O devices and the
main memory. Therein, it raises a critical security issue:
How can the computer architecture enforce that devices only
read from and write to the intended I/O buffers? Within the
scope of this ongoing research project, we improve existing
solutions to this problem by providing a byte-granular mem-
ory protection mechanism that is enforced universally for
both software and hardware. Additional design goals of the
prototype are compatibility with unmodified legacy devices
(with full security) and operating systems (without security
advantage). We target embedded real-time devices, whose
architecture is particularly vulnerable to DMA attacks.

Northcape, our proposed system, uses a capability-based
memory protection mechanism with byte granularity. In
contrast to existing protection systems, access control is
implemented at the bus level in the northbridge. Thereby,
the protection applies to the CPU, any accelerators and
DMA peripherals in the system and protects system memory
and memory-mapped I/O peripherals. Our pointer tagging-
based implementation ensures compatibility with legacy 64-
bit addressing schemes and an unmodified AXI system bus.

1. Introduction

Transferring data efficiently between the main memory
and peripheral input/output (I/O) devices such as termi-
nals, network interface cards (NICs) and displays is crucial
for modern computers. To this end, Direct Memory Access
(DMA) allows a high-speed I/O device to copy data into
memory independent from the CPU, allowing the CPU to
perform useful work during the transfer. However, DMA
raises the security issue of ensuring access control to
memory: DMA devices are usually given the addresses
of physically contiguous DMA buffers in memory directly
or via the indirection of DMA descriptors. Devices are
expected to1 only read and write within the bounds of the
DMA buffers. However, if no access control mechanism
for DMA devices is in place, compromised DMA devices
can be abused to read and write any address in the physical
address space. It has been demonstrated that this enables
stealthy rootkits or even spawning root shells [12, 15].

Two specific variants of the aforementioned DMA
attacks exist: First, a software adversary with access to
the DMA descriptors can abuse the DMA device for a

1. See, for example, the documentation of the Xilinx AXI
DMA: https://docs.amd.com/r/en-US/pg021 axi dma/AXI-DMA-v7.1-
LogiCORE-IP-Product-Guide

confused deputy attack to accomplish, e.g., privilege es-
calation. Second, the DMA device can be compromised or
purpose-built for performing DMA attacks: Beniamini [3]
demonstrates an over-the-air exploitation of a broadcom
mobile WiFi chip, turning a benign DMA device into a
hardware trojan. Markettos et al. showcase an implant
that poses as a benign Thunderbolt-enabled peripheral, but
performs DMA attacks via Thunderbolt PCIe encapsula-
tion [12].

A possible solution for low-cost embedded devices
relies on a memory protection unit (MPU) in the CPU
to segregate physical memory into several compartments.
One compartment can then be utilized to confine DMA
descriptors. Untrustworthy software is not given access to
the compartment containing the descriptors [14]. While
this approach mitigates the confused deputy attack, it can
only cover software adversaries: the attacks by Beniamini
and Markettos et al. are still possible.

A more advanced solution is deployment of an I/O
memory management unit (IOMMU) that confines DMA
devices to an individual virtual address space. Markettos
et al. were able to demonstrate that even devices with
IOMMUs can be vulnerable to DMA attacks: In particular,
an IOMMU can only enable protection at page granular-
ity, which not necessarily coincides with the size of the
DMA buffer. DMA devices are still able to read and write
beyond their intended buffer, accessing other structures
contained on the page [12].

The attack by Markettos et al. (Thunderclap) high-
lights one important requirement for DMA access con-
trol: protection needs to be enforced at byte granularity.
Otherwise, programming errors in the hardware-software-
interface can enable exploitation by DMA devices.

Capability architectures are a common mechanism for
byte-granular memory access control. Therein, capabili-
ties are unforgeable references to a segment in memory,
identified by starting address and length. However, the
implementation of capabilities for all modern approaches
lives in the CPU. Thereby, an extension of capabilities to
protect DMA devices as well is non-trivial and has not
been attempted before [13]. In particular, in a paging-
based scheme, capabilities are restricted to a singular
virtual address space and cannot easily be shared with
other processes or devices.

Hence, in this ongoing research project, we are con-
structing a capability architecture that can universally pro-
tect memory from both hardware and software adversaries.
We implement the enforcement of capabilities in the
northbridge, which is in the unique position of controlling
all accesses to system memory and MMIO peripherals.

https://docs.amd.com/r/en-US/pg021_axi_dma/AXI-DMA-v7.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg021_axi_dma/AXI-DMA-v7.1-LogiCORE-IP-Product-Guide


Thereby, we make memory protection a responsibility
of the front-side bus instead of the CPU. By carefully
designing our capability representation, we achieve full
interoperability with 64 bit addresses.

1.1. Related Work

While MPUs and IOMMUs are clearly inadequate
for protecting memory from DMA devices as laid out
above, not all capability systems are approriate either.
Historical capability systems such as Plessey System
250 [17] and those summarized by Levy [11] did not
support DMA at all. Hence, there was no need to protect
against DMA attacks. More recent capability systems
such as CHERI [18] and RV-CURE [10] are focused on
protecting software from software adversaries, especially,
exploitation of programming errors. This is motivated by
the plethora of memory-related programming errors that
continues to be discovered in modern software [9]. To this
end, they implement capabilities within the CPU pipeline
(and crucially, before or during address translation) for ef-
ficiency, allowing DMA devices to bypass the protections.
Also, capabilities are only valid within one virtual address
space. Thereby, they are not designed to provide security
from DMA attacks, although the authors of CHERI have
recently proposed this as future work [13].

The issue of protecting memory from non-CPU de-
vices has also been addressed from the point-of-view of
rack-scale or distributed computing, again utilizing capa-
bilities. SemperOS by Hille et al. [7] defines a distributed
capability scheme in a topology built around a network-
on-chip (NoC), where microkernels on compute elements
explicitly manage and enforce capability-based protection.
While the scheme can be employed for protecting any type
of device, it offers no compatibility with legacy software
or devices and relies on the NoC topology, which (as
of now) is not representative of embedded devices and
even most workstations and servers. CEP by Azriel et al.
aims at protecting Non-Volatile Memory (NVM) with
capabilities without requiring ISA changes. To this end,
the authors add a CHERI-based microcontroller into the
NVM memory controller, enforcing access control with
byte granularity. The scheme only considers transactions
between CPUs and NVM, as it relies on trusted software
to relay handles to CHERI capabilities to userspace pro-
cesses. No mechanism for protecting DRAM or non-CPU
DMA-capable devices is outlined [1].

1.2. Contribution

We are designing a novel capability architecture that
enforces access control for both software and hardware
components on embedded realtime systems with byte
granularity. In particular, Northcape satisfies the following
novel functional requirements: compatibility with legacy
DMA devices, MMIO peripherals, operating systems and
applications; exclusive access to a segment using lock-
ing; a cooperative hardware-accelerated reference count-
ing scheme for memory management; efficient revocation
of capabilities without leaking any secrets to the OS;
device-interpreted bits associated with each capability to
support device-specific restrictions and compatibility with
industry-standard buses such as AXI or PCIe and CXL.

2. Northcape: Overview

This section introduces key concepts of the envisioned
Northcape system. Appendix A discusses the implemen-
tation plans in more depth.

2.1. Terminology and Research Questions

Northcape generalizes bus masters such as CPUs,
NICs, accelerators etc. as data users, and bus slaves
including memory controllers and MMIO peripherals to
data stores. Data users run one or more tasks which
can be implicit (e.g. sending and receiving packets on a
NIC) or explicit (modules on a CPU). Data stores contain
segments identified by a physical address interpreted by
northbridge and slave and a byte-granular length. To this
end, the northbridge maintains a capability metadata table
(CMT) in DRAM. Finally, tasks hold capabilities which
authorize them to access segments within the scope of the
permissions specified at capability creation time.

2.2. Security Model

The Northcape security model generalizes confused
deputy attacks as well as compromised devices in the fol-
lowing way. An honest data user uh (conceptually: CPU)
is running an honest task th (e.g., a cryptographic library)
that operates on a segment sh. Let the trusted computing
base (TCB) refer to the capability-enforcing northbridge,
the data store holding sh, uh and th. A probabilistic
polynomial-time (PPT) adversary A can compromise all
tasks and devices that are not part of the TCB. Physical
attacks like bus snooping and speculation attacks are out
of scope. We define two predicates:

1) th has an exclusive lock on sh via the capability
mechanism and A has a capability for sh.

2) th has no exclusive lock on sh and A does not
have a capability for sh.

As long as one of the predicates is true, Northcape needs
to ensure the following properties:

1) A cannot distinguish any bit b ∈ sh from random
with non-negligible probability.

2) The likelihood of A modifying a bit b ∈ sh
without th detecting this by incurring a trap on
access to sh is negligible.

2.3. Implementation of Capabilities

In Northcape, a capability token c conceptually con-
sists of an identifier n, a MAC tag σ and an offset o (see
Section A.1 for details). n identifies an entry in the CMT,
referencing a segment in a data store. o identifies a relative
starting position in the segment for each access. σ serves
the unforgeability of the token. It is computed over the
CMT entry associated with n, which includes a nonce to
prevent use-after-reallocation and replay attacks, akin to
RV-CURE [10]. An additional similarity is our encoding,
where n and σ are stored in the high bits of a 64-bit
pointer, leaving the lower bits for o. This ensures com-
patibility with legacy 64-bit pointers, including pointer
arithmetic within one segment [4, 10]. A key difference

2



to RV-CURE is that we provide no specific instructions
for converting pointers into capability tokens. All pointers
in the system are implicitly capabilities and all accesses
protected.

We differentiate between two types of capabilities,
direct and indirect, shown in Figure 1. A direct capability
owns the segment it is pointing to, i.e., the direct capability
can be used to revoke all indirect capabilities referencing
the same physical segment. Direct capabilities can also
be sliced for the creation of new, non-overlapping direct
capabilities and swapped to disk. Indirect capabilities are
derived either from direct or other indirect capabilities,
restricting access in both cases. The former is used to pro-
vide restricted sub-object capabilities, akin to CHERI and
RV-CURE [10, 18]. Also, cloning and dropping operations
that increase and decrease the reference count without
changing permissions are provided, facilitating efficient
memory management for shared capabilities. Locking of
both direct and indirect capabilities is supported, ensuring
exclusive access. For indirect capabilities, as overlapping
indirect capabilities can exist, the owning direct capabil-
ity is locked transparently. However, indirect capabilities
cannot be used for creation of direct capabilities and
revocation of indirect capabilities.

Crucially, in the Northcape system, direct capabilities
are exclusively used by the allocator. Thereby, in the
face of memory pressure or crashes, the allocator can
revoke capabilities, thus preventing tasks from stealing
memory. This invalidates the entry in the CMT and creates
a new entry, allowing the physical segment to be re-
purposed. The design of the CMT in conjunction with
the use-after-reallocation protection ensures that all fur-
ther uses of indirect capabilities referencing the revoked
direct capability cause a bus error. Revocation further
overwrites the physical segment with 0-bytes to ensure no
secrets are leaked to the allocator. Overwriting segments
on revocation along with the locking mechanism we will
introduce shortly allows us to define a TCB that does not
contain the allocator. A second benefit of this strategy is
that it allows the allocator to allocate direct capabilities for
segments larger than what was requested. Efficient alloca-
tion algorithms for segmented memory commonly define
a minimal segment size to limit external fragmentation,
possibly allocating a larger segment than requested [21].
In Northcape, the allocator can afterwards derive an in-
direct capability with exactly the requested size, ensuring
no over-reading or over-writing of the segment is possible
in the application. The allocator can also safely store
metadata in a segment inaccessible to the application.

For the purposes of bootstrapping the system after a
power cycle, the northbridge creates a well-known root
capability on reset. This is a direct capability that owns
one segment comprising the entire physical address space
and is encoded in a way such that naı̈ve use of 32-bit
physical addresses is interpreted as accessing the root
capability at the corresponding offset.

2.4. Operations

Let nw refer to the word length of the system in bits
(intended to be ≥ 64). Let R refer to read, W to write, X
to execute permissions. We support the following abstract
operations on capabilities:

Root 
Capability Direct Capability

create()

Direct Capability

Indirect Capability

Indirect Capability

derive()

derive()

Indirect Capability
derive()

Indirect Capability
clone()

dr
op

()

Owned by Allocator

Owned by task

Owned by DMA device

re
vo

ke
()

Figure 1: Types of capabilities in the Northcape system.

D Q

Q

Northbridge

TStart1=0
D Q

Q

TEnd1=4
D Q

Q

TBits1=2

Capability c
Capability a

Digest=0b0100

Digest=0b0101

D Q

Q

TStart2=4
D Q

Q

TEnd2=8
D Q

Q

TBits2=3

Capability a

Digest=0b0100

Digest=0b0101

Capability c
Capability b

check(token for a) 

create(capability b)

h1(a)

h1(b)

Digest=0b0110

h2(b)

h2(a)
h2(c)

Figure 2: Capability metadata table CMT during expan-
sion after a hash collision.

create(ca, l, b, p) −→ c′a, cb On input a capability ca for a
segment with offset oa and length la and reference count
0, a length l ≤ la, device-specific permissions b ∈ {0,
1}nw and capability permissions p ∈ {R,W,X}, returns
created capability cb with offset oa, length l, device-
specific bits b and permissions p and reduces la by l.
Destroys ca if l = la.
merge(ca, cb) −→ cm On input capabilities ca and cb
pointing to physically neighboring segments, creates a
merged capability cm with offset oa and length la + lb.
The create and merge operations are intended only for
the memory allocator. A comprehensive study by Wilson
et al. [16] has pointed out that splitting (create in our
model) and merging segments are the only operations
that general-purpose slab memory allocation algorithms
perform in practice. Merging is particularly useful for
reducing fragmentation when an application allocates and
returns many small segments at once.
derive(ca, l, o, p) −→ ci On input a capability ca, a length
l ≤ la, an offset o ≥ 0 such that l + o < la and
permissions p ⊂ pa creates an indirect capability with
offset oa + o, length l and permissions p. derive is used
to create indirect capabilities, which are exclusively used
by all tasks and devices except the memory allocator.
lock(ca, tid) −→ b On input a capability ca and a task
identifier tid ∈ {0, 1}n, attempts to exclusively lock the
capability for the task identified by tid. Honest tasks
choose tid uniformly at random and specify it for every
access to a locked capability. Returns a bit b ∈ {0, 1}
indicating success or failure. On success, no other task
including the memory allocator can access the segment
identified by ca unnoticed, even if it has a capability that is
a sub- or superset of ca, minimizing the TCB. A lockable
permission prevents abusing lock for DoS.
unlock(ca, tid) −→ b On input a capability ca and a task
identifier tid releases the exclusive lock of tid on ca.
clone(ca) −→ b On input a capability ca, increases the
reference count of the capability. Returns a bit b ∈ {0, 1}
indicating success or failure.
drop(ca) −→ b On input a capability ca, reduces its
reference count. Returns 0 if the reference count of the
capability is not zero after completion or 1 if it is zero.
If ca is an indirect capability, it is destroyed and the
operation recurses on its parent. If the capability is locked,

3



drop will not decrease the reference count below 1. clone
and drop are used for the cooperative reference counting
mechanism, which is useful for shared segments.
revoke(ca) −→ c′a On input a direct capability ca, de-
stroys the CMT entry associated with the capability and
creates a new direct capability c′a for the segment identi-
fied by the capability with full permissions. Overwrites the
segment with 0-bytes. Returns the new capability. revoke
is intended for the allocator to reclaim memory on process
crash or memory pressure, its use might lead to bus
errors when tasks continue using indirect capabilities for
the segment. It only accepts direct capabilities to prevent
tasks from stealing memory. This is the main difference
between Northcape and Capstone’s linear capabilities: By
overwriting the segment on revocation, we can ensure
no secrets are leaked without having to support unini-
tialized capabilities, making the implementation easier.
Unfortunately, Capstone does not discuss these trade-offs
or propose a hardware implementation of uninitialized
capabilities [20].
mkXonly(ca) −→ cs On input a capability ca, creates
an execute-only capability, i.e., an indirect capability with
permission p = {X} from a capability ca.
calls(cs, cr) This operation only applies to CPUs. On
input execute-only capabilities cs, cr, locates the segment
s identified by cs. It then calls a function defined starting
at the second word of s, passing the first word of s as
well as cr as arguments. cr can be used to return from the
call by performing a second calls. mkXonly and calls
implement protected procedure calls for subsystem calls
(e.g., a network stack) akin to Plessey System 250 [17].

In Northcape, the northbridge implements the opera-
tions defined above. It provides an MMIO interface which
data users can utilize to invoke the aforementioned oper-
ations, conveying parameters and responses. Additionally,
for each bus transaction, the northbridge expects to re-
ceive a capability token in the address lanes of the bus.
Optionally (for tasks wishing to lock capabilities), the data
user can provide a task identifier chosen by the task in the
User vector of the bus. This is used by the northbridge to
ensure that only the lock holder can perform accesses to a
segment and is based on a similar strategy introduced by
Bahmani et al. [2]. The northbridge refers to the capability
metadata table (CMT) to determine whether the access is
permissible under the presented token and task id.

2.5. Data Structures

The CMT is a hash table in main memory, which is
maintained by the northbridge. It contains one entry for
each active capability in the system. Lookup is performed
based on the identifiers n contained in the token. The
MAC tag σ for each entry is stored in the table to facilitate
fast comparison between the actual and the presented
tag. Thereby, the northbridge can ensure that the token
referring to the entry is valid at the time of the access. In
conjunction with dropping and revoking capabilities, this
is the mechanism used to provide temporal safety. Secu-
rity from replay, use-after-free and use-after-reallocation
attacks requires the CMT to also include a Nonce for each
entry. It is based on a monotonically increasing counter
that gets incremented after each capability operation and
is input when computing σ.

In addition to the attributes given above, entries for
indirect capabilities also contain a capability for their
parent, i.e., the capability they were derived from. When
validating the access to an indirect capability, the north-
bridge recurses to its parent until it reaches the root direct
capability. Thereby, when the direct capability is revoked,
all uses of the derived capabilities cause validation errors.
Hence, no explicit sweeping of capabilities to revoked
segments and no lifetime tokens are needed, which is
an improvement compared to existing revocation schemes
such as CHERIvoke [19].

In order to allow a high number of active capabilities
as well as memory efficiency, the CMT is optionally
resizable. To this end, an adapted extendible hashing
scheme [5] is used, utilizing the capability identifier n
as key. As in the original scheme by Fagin et al., a
(non-cryptographic) hash function h1 computes a digest
of the capability identifier n. We then use the tbits least
significant bits of the digest to map a number to a directory
in our hash table. However, we inline an implicit 1-sized
bucket into each directory entry in the hash table, leaving
us with a single contiguous table. There are three reasons
motivating this decision: First, all entries are padded to the
same size (see Section A.2), which allows us to match the
size of each hash table directory with the entries. Second,
we can maintain the entire CMT in a single segment,
which makes co-existence with the memory allocator in
the OS significantly easier. Finally, this allows us to
perform a lookup in one memory access.

Previous research by Friedman et al. [6] has pointed
out that hash tables are not necessarily suitable for em-
bedded real-time applications, as duration of retrieval and
insertion operations might vary significantly. This is pri-
marily caused by the collision handling algorithm: When
an entry that is to be inserted into the table is mapped to a
directory that contains a valid entry, the collision handling
algorithm finds a way to reorganize the table such that
the new entry can be inserted. Commonly used algorithms
such as open addressing or chaining have variable run time
depending on the internal table state, which is not ideal
for real-time applications [6]. Most research involving
hash tables aims at providing amortized constant latency
for insertion and look up; the problem of guaranteed
bounded latency for all hash table operations appears to
be understudied in the literature. Thus, our proposed CMT
adapts the strategy by Friedman et al. to the extendible
hashing scheme: We maintain an empty shadow CMT that
has twice as many bits as the current CMT. When an insert
collision occurs for a capability cn that is to be created,
we choose a new hash function h2 and select t′bits of the
shadow CMT as tbits+1. We insert the new entry for cn
into the shadow table using h2 and t′bits. For each CMT
access, we check both the original and the shadow CMT.
As proposed by Friedman et al., we rehash each entry
from the original CMT into the shadow CMT when it is
accessed. This is illustrated in Figure 2. At some point,
the original CMT is empty. We then update our internal
metadata, promoting the shadow CMT to the active CMT,
and inform the OS allocator that the CMT was freed via a
status register. We then allocate a new shadow CMT and
re-start the algorithm if needed. Collisions during CMT
expansion can be handled using an overflow buffer [8],
i.e., a small content-addressed memory in the northbridge.

4



3. Security Discussion

As laid out in Section 2.2, Northcape has two major
security goals: First, an adversary cannot guess the infor-
mation in a segment that it is not explicitly allowed to
access. Second, an adversary cannot change the informa-
tion in the segment without the honest task noticing (by
receiving a bus error on access). In other words, Northcape
protects the confidentiality and integrity of data contained
in segments. The adversary is able to compromise all tasks
and devices outside of the trusted computing base (TCB),
which consists of the honest task owning the segment,
the data user it is running on, the northbridge and the
data store the segment is located in.

The locking mechanism allows us to add important
distinctions: An adversary might not have been given a
capability for a segment at all. An adversary might also
have a capability for the segment, but the honest task holds
a lock on the segment. Thereby, once a task gains a lock
on a segment, it can be assured that the data in the segment
cannot be accessed by anyone outside of the TCB.

Security in the first scenario relies on unforgeability
of the capability tokens2. In order to successfully forge
a token, an adversary needs to guess both the identifier
n and the MAC tag σ. In the envisioned Northcape
implementation, n will have 46 bits and σ will have 16.
Thereby, in theory, the adversary has to guess 262 bits for
a forgery. However, for efficiency in the implementation, n
might be predictable (e.g., derived from a counter). Thus,
an adversary only needs to guess σ. Assuming a strong
MAC is used, the likelihood of a successful forgery is 1

216 .
Note that the adversary can only perform online guesses,
and on a wrong guess, the TCB can immediately separate
the compromised device from the bus. Thereby, we believe
that the unforgeability of our system is adequate. Note
that the adversary can trivially guess the root capability;
we make the assumption that it is destroyed in the boot
process before the adversary becomes active. For the sake
of argument, assume that this is not done; in this case, we
consider the attack to fall under the scenario where the
adversary has a capability to the segment of interest.

Security in the second scenario relies on both the un-
forgeability of capability tokens and the secrecy of the task
identifier chosen by the honest task. An adversary with
knowledge of the task identifier and a capability for the
segment of interest can impersonate the lock holder and
gain access to the locked segment. Thus, the task identifier
is chosen from an unpredictable RNG and has a large
size of 264 bits in the envisioned implementation, making
guessing the identifier futile (and easily detectable). The
identifier is stored in a write-only architectural register of
the CPU that runs the honest task, which is part of the
TCB, making it impossible for the adversary to read it.
Remember that bus snooping and other physical attacks
are out of scope, leaving the adversary no way to learn
the task identifier besides guessing.

Note that again, the root capability does not give the
adversary an advantage here – when the honest task locks
the segment that it is working on, it effectively locks the
entire physical address space. Everything argued earlier
about the locking mechanism is still true in this case.

2. As Northcape relies on implicit capability delegation for backward
compatibility, it cannot detect correctly guessed forged tokens.

One interesting scenario has not been discussed: an
adversary could use the drop and revoke operations to
gain access to the segment. Both operations require a
capability for the segment of interest. Thereby, according
to our security model, the honest task must hold a lock on
the segment. The practical implication of this assumption
is that tasks need to either trust the allocator (that is not in
the TCB) not to hand capabilities for segments containing
secrets to untrusted tasks or lock segments containing
secrets. Remember that drop does not destroy a capability
when it is locked. Hence, the adversary cannot abuse it to
forcefully reclaim the memory. Also, revoke overwrites
and invalidates the memory. Thus, while revoke techni-
cally lets the adversary modify the data in the segment,
it does not learn any private task information and all
attempts by the honest task to use the segment lead to
a validation error, making the attack detectable.

4. Plans for Evaluation

We plan an implementation of Northcape on a Digi-
lent Genesys 2 FPGA board, featuring a Xilinx Kintex-
7 FPGA and 1 GiB of DDR-3 DRAM. Our design will
comprise a RISC-V CPU and an AXI interconnect as
northbridge. We will use a Xilinx DMA controller con-
nected to an Ethernet MAC as exemplary DMA device.
On the software side, we plan on using the Zephyr RTOS.

We currently plan on performing both microbench-
marks and a real-world evaluation. First, we will in-
vestigate how many active capabilities are present in a
representative real-time application at any point in time.
We will also measure the average and maximum depth of
indirect capabilities, which directly influences the memory
access latency. We will proceed to execute a set of repre-
sentative benchmarks from the SPEC CPU suite. Finally,
we will evaluate whether Northcape manages to ensure
real-time operation of a representative application.

5. Summary and Future Work

We have presented Northcape, a proposal for a hard-
ware capability system that provides byte-granular access
control for both software and DMA devices. Therein,
Northcape is fully backwards compatible with existing
DMA devices, bus infrastructure and software.

Additionally, Northcape incorporates well-received
features from other hardware capability systems.
Northcape supports sub-object capabilities, similar to
CHERI [18] and RV-CURE [10], exclusive access to
capabilities similar in concept to linear capabilities in
Capstone [20] (but with a simplified implementation)
and revocation with lower overhead and simpler
implementation than, e.g., CHERIvoke [19]. We also
introduce promising new features: device-interpreted
restrictions in the form of annotations to capabilities and
an encoding scheme for capability tokens that supports
both large identifiers and large offsets.

We are confident that we have pointed out that North-
cape fulfils the envisioned security goals. However, it
remains to be proven that Northcape can deliver on the
performance promises. To this end, we are currently in
the process of implementing Northcape on an FPGA to

5



facilitate both microbenchmarks and real-world evalua-
tions in realistic scenarios. Especially, we are looking to
investigate the impact our system has on latency and real-
time capabilities of a computing system.

Additionally, Northcape enables interesting possibil-
ities for future research. Northcape has potential uses
in rack-scale computing as holistic access control model
for all system devices. Exploring potential extensions
of Northcape that incorporate non-volatile capabilities
is another interesting research direction. Finally, North-
cape might also be an interesting platform for para-
virtualization. The token-based addressing can be used to
safely map devices to VMs without requiring additional
hardware, and for efficient sharing of segments between
VMs and the hypervisor. Calling execute-only capabilities
can also serve as a type-safe alternative to hypercalls and
potentially even offer latency advantages as no change of
address space is incurred.

References

[1] L. Azriel, L. Humbel, R. Achermann, A. Richardson,
M. Hoffmann, A. Mendelson, T. Roscoe, R. N. M.
Watson, P. Faraboschi, and D. Milojicic. Memory-
Side Protection With a Capability Enforcement Co-
Processor. ACM Transactions on Architecture and
Code Optimization, 2019. URL https://dl.acm.org/
doi/10.1145/3302257.

[2] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig,
M. Klimmek, A.-R. Sadeghi, and E. Stapf. {CURE}:
A Security Architecture with {CUstomizable} and
Resilient Enclaves. In SEC, 2021. URL https:
//www.usenix.org/system/files/sec21-bahmani.pdf.

[3] G. Beniamini. Project Zero: Over The Air:
Exploiting Broadcom’s Wi-Fi Stack (Part 1), 2017.
URL https://googleprojectzero.blogspot.com/2017/
04/over-air-exploiting-broadcoms-wi-fi 4.html.

[4] D. Chisnall, C. Rothwell, R. N. Watson, J. Woodruff,
M. Vadera, S. W. Moore, M. Roe, B. Davis, and P. G.
Neumann. Beyond the PDP-11: Architectural Sup-
port for a Memory-Safe C Abstract Machine. ACM
SIGARCH Computer Architecture News, 2015. URL
https://dl.acm.org/doi/10.1145/2786763.2694367.

[5] R. Fagin, J. Nievergelt, N. Pippenger, and H. R.
Strong. Extendible hashing—a fast access method
for dynamic files. ACM Transactions on Database
Systems, 1979. ISSN 0362-5915. URL https://
dl.acm.org/doi/10.1145/320083.320092.

[6] S. Friedman, A. Krishnan, and N. Leidenfrost. Hash
tables for embedded and real-time systems. Tech-
nical report, Washington Univ., 2003. URL https:
//core.ac.uk/download/pdf/233199149.pdf.

[7] M. Hille, N. Asmussen, P. Bhatotia, and H. Härtig.
{SemperOS}: A Distributed Capability System. In
USENIX ATC, 2019. URL https://www.usenix.org/
system/files/atc19-hille.pdf.

[8] Z. István, G. Alonso, M. Blott, and K. Vissers. A
Hash Table for Line-Rate Data Processing. ACM
Transactions on Reconfigurable Technology and Sys-
tems, 2015.

[9] V. Katos, S. Rostani, P. Bellonias, N. Davies,
A. Kleszcz, S. Faily, A. Spyros, A. Papanikolaou,
C. Ilioudis, and K. Rantos. State of Vulnerabilities

2018/2019 - Analysis of Events in the life of
Vulnerabilities. Technical report, ENISA, 2019.
URL https://www.enisa.europa.eu/publications/
technical-reports-on-cybersecurity-situation-the-
state-of-cyber-security-vulnerabilities.

[10] Y. Kim, A. Kar, J. Lee, J. Lee, and H. Kim. RV-
CURE: A RISC-V Capability Architecture for Full
Memory Safety, 2023. URL http://arxiv.org/abs/
2308.02945.

[11] H. M. Levy. Capability-Based Computer Systems.
2014. ISBN 978-1-4831-0106-4.

[12] A. T. Markettos, C. Rothwell, B. F. Gutstein,
A. Pearce, P. G. Neumann, S. W. Moore,
and R. N. Watson. Thunderclap: Exploring
vulnerabilities in operating system IOMMU
protection via DMA from untrustworthy
peripherals. In NDSS, 2019. URL https:
//www.ndss-symposium.org/wp-content/uploads/
2019/02/ndss2019 05A-1 Markettos paper.pdf.

[13] A. T. Markettos, J. Baldwin, R. Bukin, P. G. Neu-
mann, S. W. Moore, and R. N. M. Watson. Posi-
tion Paper:Defending Direct Memory Access with
CHERI Capabilities. In Proceedings of the 9th
International Workshop on Hardware and Architec-
tural Support for Security and Privacy, 2021. URL
https://dl.acm.org/doi/10.1145/3458903.3458910.

[14] A. Mera, Y. H. Chen, R. Sun, E. Kirda, and
L. Lu. D-Box: DMA-enabled Compartmentaliza-
tion for Embedded Applications. In NDSS, 2022.
URL https://www.ndss-symposium.org/wp-content/
uploads/2022-53-paper.pdf.

[15] P. Stewin and I. Bystrov. Understanding DMA
Malware. In Detection of Intrusions and Malware,
and Vulnerability Assessment, 2013.

[16] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic storage allocation: A survey and
critical review. In Memory Management, 1995.

[17] S. Winkler. Computer Communication - Impacts and
Implications. ACM, 1972. LCCN 79319088.

[18] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W.
Moore, J. Anderson, B. Davis, B. Laurie, P. G.
Neumann, R. Norton, and M. Roe. The CHERI
capability model: Revisiting RISC in an age of
risk. In 2014 ACM/IEEE 41st International Sympo-
sium on Computer Architecture (ISCA), 2014. URL
https://ieeexplore.ieee.org/document/6853201.

[19] H. Xia, J. Woodruff, S. Ainsworth, N. W. Fi-
lardo, M. Roe, A. Richardson, P. Rugg, P. G. Neu-
mann, S. W. Moore, R. N. M. Watson, and T. M.
Jones. CHERIvoke: Characterising Pointer Revoca-
tion using CHERI Capabilities for Temporal Mem-
ory Safety. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchi-
tecture, 2019. URL https://dl.acm.org/doi/10.1145/
3352460.3358288.

[20] J. Z. Yu, C. Watt, A. Badole, T. E. Carlson, and
P. Saxena. Capstone: A Capability-based Founda-
tion for Trustless Secure Memory Access. In SEC,
2023. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/yu-jason.

[21] A. S. Yurchenko. Algorithm of dynamic segmented
memory allocation. Cybernetics, 1981. URL https:
//doi.org/10.1007/BF01307036.

6

https://dl.acm.org/doi/10.1145/3302257
https://dl.acm.org/doi/10.1145/3302257
https://www.usenix.org/system/files/sec21-bahmani.pdf
https://www.usenix.org/system/files/sec21-bahmani.pdf
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://dl.acm.org/doi/10.1145/2786763.2694367
https://dl.acm.org/doi/10.1145/320083.320092
https://dl.acm.org/doi/10.1145/320083.320092
https://core.ac.uk/download/pdf/233199149.pdf
https://core.ac.uk/download/pdf/233199149.pdf
https://www.usenix.org/system/files/atc19-hille.pdf
https://www.usenix.org/system/files/atc19-hille.pdf
https://www.enisa.europa.eu/publications/technical-reports-on-cybersecurity-situation-the-state-of-cyber-security-vulnerabilities
https://www.enisa.europa.eu/publications/technical-reports-on-cybersecurity-situation-the-state-of-cyber-security-vulnerabilities
https://www.enisa.europa.eu/publications/technical-reports-on-cybersecurity-situation-the-state-of-cyber-security-vulnerabilities
http://arxiv.org/abs/2308.02945
http://arxiv.org/abs/2308.02945
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05A-1_Markettos_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05A-1_Markettos_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05A-1_Markettos_paper.pdf
https://dl.acm.org/doi/10.1145/3458903.3458910
https://www.ndss-symposium.org/wp-content/uploads/2022-53-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-53-paper.pdf
https://ieeexplore.ieee.org/document/6853201
https://dl.acm.org/doi/10.1145/3352460.3358288
https://dl.acm.org/doi/10.1145/3352460.3358288
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason
https://doi.org/10.1007/BF01307036
https://doi.org/10.1007/BF01307036


Field Size (Bits) by
Type

Remark

Type 2 Identifies sizes of capability fields
MAC
tag

16 Truncated tag σ

Number 14/46/30/22 Capability number n
Offset 32/0/16/24 Offset o into segment

TABLE 1: Encoding of Northcape capabilities into 64-bit
addresses, from MSB to LSB.

A. Proposed Representations

This chapter points out how we plan to represent
capabilities and CMT entries in the ongoing implemen-
tation of the Northcape system. We also discuss how our
scheme can be extended to systems that feature multiple
northbridges.

A.1. Capability Representation

Table 1 details how we envision capabilities to be
encoded into 64-bit addresses. We provide four different
types of capabilities, such that we can provide both a
large number of capabilities for small segments and a
few capabilities for very large segments. To this end, the
two most significant bits of the capability encode its type.
The actual capability token contains type, MAC tag and
capability number. The address can further contain an
offset o into the capability, which indicates which word
in the segment the task wants to access. We provide a
zero-length capability where no offset is contained; this
is intended for scenarios where a bus transaction access
starts at the beginning of the segment and the length of
the transfer is indicated by AXI burst size.

We have carefully selected the encoding scheme such
that we can define a root capability in a way that makes it
compatible with legacy software: For the root capability,
type, tag and number fields are zero. Thereby, as long
as the root capability exists, an access to an ordinary
32-bit physical address a is interpreted as accessing the
segment identified by the root capability at offset a. By
mapping the physical addresses of memory and MMIO
peripherals into a 32-bit address range, legacy software
will implicitly use the root capability to access them.
Thereby, Northcape provides full backwards compatibility
with legacy software. In particular, this allows us to re-use
existing software such as the zero-stage loader without
modification. Destroying the root capability after initial
booting allows us to reach the promised security level.

A.2. Capability Metadata Table

The proposed representation of the capability metadata
table (CMT) entries is shown in Table 2. In addition to
the capability types introduced earlier, we have provided
a paged-out capability that is especially intended for lazy
loading of libraries. Access to such a capability will raise
an IRQ, which allows the OS to fault the corresponding
segment in before continuing execution. To this end, we
have designed the paged-out capability to be convertible
into a direct capability in-place. On the same note, we
have added a Copy-on-Write flag for efficient implemen-
tation of fork() system calls. We have chosen to add

Field Size
(Bits)
by Type

Applies
to type

Remark

Type 3 all Capability Type (direct, indi-
rect, paged)

Base 32 all but
paged

Segment start in physical
memory

Pagefile
number

64 paged Identifier of the backing store
of the capability

Parent 64 indirect Capability for capability from
which this one was derived

Length 32 all Length of the segment in bytes
Ref.
count

16 all but
paged

Remaining references

Lock
Holder

55 direct Task id of the lock holder

User 64 direct,
paged

device-specific bits assoc. with
the capability

R 1 all Read permission
W 1 all Write permission
X 1 all Execute permission
Locked 1 direct,

paged
Lock on segment is held

Lockable 1 direct,
paged

Lock on segment is allowed

CoW 1 all Page is copy-on-write
Tag 16 all MAC tag
Nonce 32 all Counter to prevent use-after-

reallocation etc.

TABLE 2: Encoding of Capability Metadata Table entries.

a Lockable permission to our entries to prevent tasks
abusing the locking primitive for denial-of-service.

The memory controller of our evaluation platform
(Xilinx MIG on Kintex-7) can read up to 256 Bits from
DRAM per cycle. Thereby, we elected to limit the size of
CMT entries to 256 bits, allowing us to read one entry in
each bus clock cycle. This forced us to make a few minor
adjustments to the entries:

First, the segment base address is limited to 32 bits.
However, this should be sufficient for most embedded
real-time systems, which is the focus of our project. An
implementation of our scheme can silently increase this
to 64 bits without breaking compatibility.

Also, we were only able to store 55 of the intended
64 bits of the task identifier in the lock holder field.

We believe that these adjustments do not jeopardize
security of our scheme and generalizability of our results,
however, as sufficiently many bits remain.

A.3. Extension to Multiple Northbridges

While the current proposal considers a single north-
bridge, using a partitioning scheme similar to the one
proposed by Hille et al. [7], we can also support multiple
northbridges in the system: Let there be nb northbridges.
For each capability identifier, we can encode the north-
bridge responsible for the capability into the upper-most
⌈log2(nb)⌉ bits of each identifier n. Thereby, each north-
bridge maintains a partition of the capability space. On
each capability lookup, a northbridge determines based on
the upper bits of the identifier which northbridge maintains
the entry for the capability and forwards the request
if needed (see Figure 3). This can be implemented by
adding a standard interconnect that connects each pair of
northbridges in the system, possibly even at a slower clock

7



D Q

Q

Northbridge 0

TStart=0
D Q

Q

TEnd=4
D Q

Q

TBits=2

ID=0b0011
ID=0b0110
ID=0b0101
ID=0b0100

D Q

Q

Northbridge 1

TStart=0
D Q

Q

TEnd=8
D Q

Q

TBits=3

ID=0b1111
ID=0b1110
ID=0b1101
ID=0b1100

ID=0b0110

ID=0b1101

ID=0b1011
ID=0b1010
ID=0b1001
ID=0b1000

Digest=0b0100

Digest=0b1110

h1(ID)

h2(ID)

Figure 3: Implementation of CMT in a multi-northbridge
system.

speed than the front-side buses. Each northbridge can then
manage a CMT independently in its local memory using
the same mechanisms as mentioned above.

8


	Introduction
	Related Work
	Contribution

	Northcape: Overview
	Terminology and Research Questions
	Security Model
	Implementation of Capabilities
	Operations
	Data Structures

	Security Discussion
	Plans for Evaluation
	Summary and Future Work
	 A: Proposed Representations
	Capability Representation
	Capability Metadata Table
	Extension to Multiple Northbridges


