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ABSTRACT

In this paper we present a software-based implementation
of a Mobile Remote Owner Trusted Module, using security
extensions of contemporary System-On-Chip architectures.
An explicit challenge are the constrained resources of such
on-chip mechanisms. We expose a software architecture that
minimizes the code and data size of the MRTM, applying
some novel approaches proposed in recent research. Addi-
tionally, we explore alternatives within the specification to
further optimize the size of MTMs. We present an analysis
of specific new security issues induced by the architecture.
Performance figures for an on-the-market mobile handset are
provided. The results clearly indicate that a software-based
MRTM is feasible on modern embedded hardware with leg-
acy security environments.

Categories and Subject Descriptors

D.4.6 [Software]: Operating Systems—Security and Pro-
tection; L.4.0 [Security /Trust]: Security and Trust; K.6.5
[Computing Milieux]: Management of Computing and
Information Systems—Security and Protection

General Terms

Security

Keywords

Mobile phones, mobile trusted module, secure hardware,
trusted computing, platform security

1. INTRODUCTION

A Mobile Trusted Module (MTM) is conceptually a Trust-
ed Platform Module (TPMv1.2) as defined in the Trusted
Computing Group (TCG) specifications [20]. MTM, how-
ever, differs in some aspects from the design of a TPM [8].
For example, MTM mandates only a minor subset of the
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TPM commands, but on the other hand includes extra com-
mands and control specifications needed for mobile phone
specific use cases such as secure boot.

The TCG Mobile Phone Work Group (TCG MPWG) de-
fines in its specification [17] two interleaving profiles for
a MTM. Depending on the owner entity, the specification
distinguishes between a Mobile Local Owner Trusted Mod-
ule (MLTM) and a Mobile Remote Owner Trusted Module
(MRTM). The local owner is the device user, i.e. the one
with physical access to the device. A remote owner is a
stakeholder without physical access to the deployed device.
Such a remote owner may e.g. be a device manufacturer or
a network service provider. To support several local and re-
mote stakeholders, the reference architecture [18] presented
by the TCG MPWG provides the opportunity of deploying
parallel MTMs, with different owners, on one device. In this
manner, every local and remote party has the possibility of
ensuring the integrity and confidentiality of their own data
on the mobile device.

To enable the parallelism and to make MTM deployable
on contemporary hardware, the specification does not re-
quire the functionality to be implemented as a discrete hard-
ware component. Instead, the MTM specification introduces
new trust roots that mandate security properties in terms of
isolation and integrity. These can still be met by imple-
menting MTM as a separate chip, but as we will see, also
processor security architectures like ARM TrustZone [4] or
Texas Instruments M-shield [16, 14] can be used to meet
these targets.

Further, the MTM supports secure boot in addition to
trusted boot. This improvement accounts for the bulk of
the new functionality introduced with MTM, compared to
the TPMv1.2. In short, MTM mechanisms can be used to
abort the boot-up sequence if required conditions in terms
of system state are not met. This is consistent with the
modus operandi with embedded devices in general, and es-
pecially with devices like handsets, on which regulatory and
legislative requirements (and as a consequence liabilities) are
imposed.

This paper reports on the activity of implementing the
remote owner’s M(R)TM logic on a contemporary hand-
set platform with the TI-M-shield security architecture. To
meet the trust root requirements, the code has to be run
in an interleaved manner on System-On-Chip (SoC) secure
memory, of which around 7kB (for code and data) is avail-
able at a given instance. For this reason, the implementation
of the MRTM is divided into parts (collections), individu-
ally minimized in terms of code and data size. Additionally,



we carefully consult the specification for options and ap-
proaches that are within the specification but still allows us
to achieve the smallest possible footprint.

The main research contribution of this paper is the over-
all architecture by which the MTM footprint is adjusted to
meet contemporary secure SoC environments, i.e. by which
the MTM functions are run within on-chip memories and
isolated by hardware features provided by the respective
Trusted Execution Environment (TrEE). We also provide
performance measurements for our implementation. To the
best of our knowledge there exists no comparable implemen-
tation of an MTM today.

The rest of this paper is organized as follows. Section 2
examines the state-of-the art in mobile trusted computing,
and presents a few architectural options deployed in this
work. In section 3 we present the mapping between MTM
trust roots and the underlying security platform. In sec-
tion 4 we list a few typical use cases for an MRTM. These
use cases form the context for which we make the imple-
mentation and decide on optimizations. An overview of our
architecture is presented in section 5. In sections 6 and 7 we
discuss optimizations made on MRTM internal structures
and commands. Sections 8 and 9 provide measurements of
the code size and the performance when deployed on a Nokia
N96 handset. Section 10 elaborates on security threats spe-
cific to our architecture. As a side-effect of this work we
have identified and reported a few errors in the MTM stan-
dard and section 11 outlines these. We conclude the paper
with future work direction and conclusions.

2. RELATED WORK

Publicly available implementations of TCG technology in-
clude the TPM emulator by Mario Strasser [15] and the ad-
junct MTM emulator by Nokia Research Center Helsinki
[9]. Both of these are provided as PC client applications
and their binary size and heap consumption far exceed the
constrained resources of our target devices.

Pioneering work for introducing MTMs as a platform con-
cept includes [22], which describes an MTM in a kernel-
level isolation domain, achieved by deploying Linux with (a
slightly) extended SELinux.

An alternative approach to reach isolation is to deploy
virtualization by means of a hypervisor over trusted hard-
ware. In [13], Schmidt et al. present a virtualization-based
deployment design based on the TCG MPWG reference ar-
chitecture. A similar example is IBM’s vIPM [5], based
on Strasser’s work, that implements virtual TPMs on desk-
top machines by means of a modified XEN hypervisor [3]
and DRTM-enabled technologies like Intel’s VT-x or AMD'’s
Pacifica. Other approaches based on virtualization with
XEN and ARM processors include [1] and [10]. All of the
above mentioned approaches are susceptible e.g. to simple
hardware attacks like memory-bus eavesdropping/injection.

Recently, the Institute for Applied Information Process-
ing and Communications (IAIK) of the Technical Univer-
sity Graz published two approaches for MTM architectures,
based on a software-based MTM on top of already deployed
security hardware. Hence, these are very similar to our solu-
tion. The approach by Dietrich [6] focuses on Java Platform
Micro Edition (J2ME) platforms. The MTM is implemented
as an applet for an (on board) JavaCard runtime environ-
ment and provides support of trusted computing functional-
ity for Java applications on mobile devices by exploiting the
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security features of the environment. Alternatively, Winter
provides in [21] his solution for a Linux-based MTM imple-
mentation based on ARM TrustZone, relying especially on
its virtualization capabilities. Winter’s solution includes a
virtualization framework and the paravirtualization of the
Linux kernel, but as an architecture the work targets a soft-
ware emulated MTM.

Our implementation requires the MTM program to be
split up in smaller fragments, each a subset of the MTM
commands, in order to comply with the limited resources of
the secure environment. The idea of disembedding a TPM is
presented in [11] by Kursawe and Schellekens. The authors
describe an alternative design to current TPM architectures
by externalizing larger parts of the TPM implementation,
resulting in smaller trust boundaries, more agility towards
specialized application requirements and reconfiguration of
the TPM itself [7]. In contrast, we do not use a minimized
TPM hardware as a trusted basis, but instead leverage the
TrEE of the main ASIC. Our end result will differ in its
security models, but the concept of “disembedding code” is
rooted in the work of Kursawe and Schellekens.

A further solution in part introduced by Schellekens et
al. [12] is to externalize the TPM state (i.e. persistent data)
by extending the trust perimeter to external (insecure) mem-
ory using authenticated encryption and statefulness man-
aged by the TPM. This is the typical and only way to man-
age larger quantities of volatile data within TrEEs such as
M-shield and ARM TrustZone, and thus also deployed in
our architecture.

3. TARGET ADAPTATION

In general terms, the MTM specification abstracts the de-
vice boot-up, and its relation to the “Roots of Trust” (RTs) in
the following way: The initial boot step consists of an engine
reset and an initialization of the trust roots, each of which
describes a necessary security precondition to be satisfied in
order for the MTM protection to be complete. The Root of
Trust for Enforcement (RTE) asserts that platform-specific
mechanisms must be used to guarantee the integrity and au-
thenticity of the MTM code and its execution environment.
Some form of device secret will be needed to establish a Root
of Trust for Storage (RTS), and immutable or similarly pro-
tected code will constitute the Root of Trust for Verification
(RTV), an engine that makes the initial measurements to
be added to MTM prior to the MTM being fully functional.
A Root of Trust for Reporting (RTR) holds the secrets to
sign PCR measurements for attestation purposes. An RTS
with suitable statefulness guarantees could be considered to
contain also the RTR.

The RTs are used to protect the initial boot sequence up
to the place where the MTM is deployed. From this point
onwards, the principle of booting is like in TPM where every
component takes a measurement of the next component to
be run. However, in MTM the measurement can be further
validated against a certificate — a Reference Integrity Metric
(RIM) — before the measurement is extended into the Plat-
form Configuration Registers (PCRs). In case a verification
during the bootstrap fails, the boot procedure is aborted, so
it is not possible to boot into an untrusted system state.

In our target device, the native handset boot starts exe-
cuting from an on-chip ROM, which in turns loads a signed
bootloader and executes it on successful verification. The
M-Shield architecture additionally includes on-chip RAM to



be used by so-called protected applications. These can either
persistently be present on an on-chip ROM, or be uploaded
to on-chip RAM as signed binaries. The system implements
a firewall/monitor entry point for executing these applica-
tions, and this firewall takes care of disabling or clearing all
security-critical processor features (interrupts, DMA, VM)
for the duration of the TrEE invocation. In this manner
the system provides hardware-enforced isolation for the pro-
tected applications. As is also evident from [14], the on-chip
protected applications have access to a limited amount of
persistent secret data (like a device-specific symmetric key)
and to cryptographic accelerator primitives. A further ex-
amination shows how these primitives can be used to fulfill
the MTM RTs:

1. RTE: If the MTM code is run as a protected applica-
tion, independently of whether it is made part of the
ROM code in the secure environment or uploaded to
the secure environment dynamically whereby its signa-
ture is checked, the platform asserts its integrity and
authenticity. Its run-time immutability and isolation
is conditional to what other applications are run as
protected applications. However, the isolation of the
MTM and its data from the OS (and system services)
is enforced by hardware access control.

2. RTS: The storage requirement of MTM is easily a-
chieved through a sealing mechanism making use (of
a derivation) of the device secret key. The crypto-
graphic primitive used for sealing should provide both
confidentiality and integrity, as well as statefulness.
Run-time statefulness can be asserted by the M-shield
alone, between boot-ups some external secure memory,
counter, or clock is needed to guarantee statefulness of
the RTS (within the needs of the MTM specification).

3. RTR: The reporting trust root defines that the secret
(private key) used to make attestation is kept secure.
This is easily achievable using the RTS.

4. RTYV: The correctness of the initial measurement of
the MTM (provided by the RT'V) implies that the RTV
must be part of the secure boot chain. E.g. a setup
where the MTM code + state is uploaded to the secure
environment as a part of the bootloader, and where
the initial measurement is measured and transferred
to the activated MTM protected application from the
same bootloader, can be considered secure, since the
bootloader itself is verified prior to being activated.

In short, implementing the MTM on a processor with a
TrEE conceptually satisfies the high-level security require-
ments of the MTM specification. A similar solution could be
envisioned on architectures with secure boot (or late-launch
validation like DRTM) combined with virtualization. For
these setups the MTM code size and memory usage is no
longer a pressing issue, but the protection of the MTM core
against data eavesdropping/modification on the memory bus
is. Memory bus attacks are easy enough to mount to be prac-
tical, especially if the reward may e.g. result in unlocking a
locked device. The need for awareness in this matter can for
example be seen in the selected MRTM use cases, described
in the following.
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4. MRTM USE CASES

We see the MRTM primarily as a vehicle for the integra-
tor/manufacturer to realize the software setup of a trusted
personal device. This notion is backed up by the speci-
fication itself — details like the optional omission of most
management functions resonates well with the fact that any
needed set-up of a software component can be done during
manufacturing. Also, the optionality of both TPM/DAA
and privacy CA support can be leveraged since there is lit-
tle need for privacy when it comes to local software man-
agement — the user’s privacy is not exposed or otherwise
threatened by this activity. In this spirit we identify three
main use cases for the validation of our adaptation of the
MRTM:

4.1 Secure boot with stakeholders

A basic, signature-based secure boot chain is a working
solution for locking software to a specific device. However,
for integration management this is cumbersome — typically
many stakeholders may contribute to the overall firmware of
a device (some write user applications, other ones do com-
munication stacks, drivers, etc). Today, the key manage-
ment and software signing is in practice handled by the main
integrator. As a result, all software patches and updates will
also have to first gathered and signed by the integrator be-
fore being released to the field. The MRTM secure boot
system with accompanying RIM certificates and verification
keys provide the means for the different device stakeholders
to operate more independently from each other (sign their
code themselves) as the overall orchestration of the trust in
the boot sequence can be handled by MTM in a standard-
ized fashion.

4.2 Secure storage for applications

Even in securely booted devices applications typically are
not provided with secure persistent flash storage for the ap-
plication’s own purposes. The MRTM specification, even
in a minimal configuration, provides the tools to seal and
bind keys and other information to the platform. Again,
the service itself is not new and can e.g. on many handsets
be realized in proprietary ways. However, an API for MTM
might be a way for the industry to agree on a common in-
terface for persistent secure storage of sensitive material like
cryptographic keys and credentials. Whether this service is
in the end visible through the MRTM or an accompanying
MLTM is another matter.

4.3 Remote attestation

Attestation, even in a non-private form, may be important
e.g. for platform software updates and licensing schemes.
Clearly, attestation is one of the strong use cases of TCG
specifications as a whole and may find its use in the mobile
domain as well.

5. ARCHITECTURE AND IMPLEMENTA -
TION

In this section, we present the architecture and implemen-
tation of our MRTM on an ARM 9 processor platform with
TI M-Shield. More generally, our implementation requires
technology that provides

1. ROM to store the program code or a mechanism by
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Figure 1: Minimized MRTM software architecture

which the integrity of code uploaded to the secure en-
vironment can be validated (code signing).

2. a shielded location (secure RAM) for the loaded state,
as well as for run-time data.

3. an isolated execution environment (TrEE) for the pro-
gram code with access to the shielded data location.

4. a device-specific, persistent secret to seed the RTS.
The confidentiality (access control) of the secret can
e.g. be bound to the secure environment itself.

5. a simple (I/O) library for use in the isolated environ-
ment, including cryptographic primitives and random
number generation necessary for a MTM.!

Figure 1 shows the current design for our software MRTM.
Due to size constraints of the secure environment in the tar-
geted devices, both the software and the state are “disem-
bedded” in the spirit of [11] and [12]. We have grouped the
MRTM commands by size and function into 12 collections
of 1-4 commands each. Depending on the command to be
executed, one of these collections is loaded into the secure
environment and executed. The integrity of the code col-
lections is maintained by the underlying M-shield security
architecture, by means of digital signatures. In a similar
fashion, the state for the MRTM(s) is loaded (and returned)
with every command invocation. The collection code is in
the current implementation responsible for the handling of
the state blob, which in the current implementation is a sin-
gle, confidentiality and integrity protected 2kB entity. Only
run-time version-control information of the state is persis-
tently kept inside the on-chip secure RAM. When powercy-

'With the exception of randomness, this is not an absolute
requirement, but one that reflects size and performance. In
measurements given in this paper, e.g. SHA-1, RSA, AES
are provided by the platform.
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cling this information is lost, old state blobs are not reusable
any more, and the MRTM will restart from a fixed, known
state.

An operating system component, the Instance Manager
(implemented in Symbian OS) handles the selective load-
ing of command collections and the state into the secure
environment based on the command to be executed. We
argue that this extended TDDL driver [19] does not need
to be part of the trusted computing base (TCB), and moti-
vate this within the informal security analysis in section 10.
This architecture by design lends itself well to multi-tasking
between several M(R)TMs as well as with other security
services running within the device security.

To achieve maximum portability and deployability the
MRTM collections (the command implementations) are im-
plemented in ANSI C. For minimizing the overall code size,
we strictly restrict the MRTM to the mandatory commands
— the architecture provides easy extendability if needed. We
do not support an EK (optional for an MTM) and by pre-
installing the AIK, SRK, and the Root Verification Au-
thority Information (RVAI), assigning the load Verification-
RootKeyEnabled flag with FALSE and presetting the veri-
fied PCRs, we end up with 33 compulsory commands, where-
by the MTM_Set VerifiedPCRSelection and MTM_Load Veri-
ficationRootKeyDisable commands are dummy implementa-
tions. Many other commands can be narrowed down, e.g. by
removing locality checks and dispensable logic in the context
of our assumptions presented in next sections.

In order to save memory in the secure RAM, especially on
the secure stack, we inline code due to high subroutine invo-
cation costs (in terms of memory space). For the same rea-
son (function size minimization) global variables and struc-
tures are used extensively.



Listing 1: Structure for symmetric SRK

Listing 2: Structure for loaded asymmetric key

// 128 bits key length
#define SRK_KEYLENGTH 16

typedef struct tdTPM_KEY_SRK {
TPM_STRUCT_VER ver;
TPM_KEY_USAGE keyUsage;
TPM_KEY_FLAGS keyFlags;
TPM_AUTH_DATA_USAGE authDataUsage;
TPM_KEY_PARMS algorithmParms;
TPM_SECRET usageAuth;
UINT32 PCRInfoSize;
TPM_PCR_INFO pcrlnfo;
BYTE symKey[SRK_.KEYLENGTH];

} TPM_KEY_SRK;

// Size of TPM_KEY_SRK in bytes: 123

6. SIZE REDUCTIONS RELATED TO KEY
MANAGEMENT

Public-key structures consume a lot of space, and in a de-
fault implementation they do take up the bulk of the MTM
state. Consequently, optimizations to these structures are
required to make the state vector more suitable for e.g. the
constrained memory resources of the M-shield TrEE. In this
section, we present a few optimization techniques for MRTM
that we apply in order to compress the key structures and
hence the overall state.

6.1 Symmetric Storage Root Key

The Storage Root Key (SRK) is used to protect data (keys
and seals) locally for storage. For this kind of use there is
no reasonable compatibility requirement with external de-
vices, since only the same MTM/TPM that produces the
encrypted data needs to be able to decrypt it.

On a traditional TPM, the SRK is generated as part of
the TPM_TakeOwnership command invocation. According
to the specification, this command defines the SRK to be a
RSA key with a key length of at least 2048 bits, supporting
OAEP encryption with SHA1 and MGF1 [20, Part 3: Com-
mands, p. 23]. Even so, the SRK is used solely for TPM
internal purposes — e.g. to wrap new keys.

On an MRTM, however, the support for taking ownership
is optional, and clearly not motivated by the notion of re-
mote ownership. Thus the SRK is in practice pre-installed
during manufacturing. For pre-installed SRKs, the TPM
specifications only require that “/a/ll storage keys MUST be
of strength equivalent to a 2048 bits RSA key or greater.
The TPM SHALL NOT load a storage key whose strength
less than that of a 2048 bits RSA key’[20, Part 1: Design
Principles, p. 18, 1. 629-631].

One way to decrease the SRK size requirement is to use a
more size-efficient asymmetric primitive like Elliptic Curve
Cryptography. However, in the absence of such alterna-
tives it is possible to implement the SRK of an MRTM as
a symmetric key with a sufficient key strength, e.g. AES
with a 128 bit key length [2]. As a necessary precaution,
the command TPM_GetPubKey must consequently be hin-
dered from reading the non-existing SRK public part. This
is achieved by assigning FALSE to the permanent flag read-
SRKPub.

To exploit the memory savings resulting from introducing
a symmetric SRK, the TPM_KEY data structure has to be
partially adapted. We introduce a new MRTM internal data
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typedef struct tdTPM_KEY_LOADED {
TPM_STRUCT_VER ver;
TPM_KEY_USAGE keyUsage;
TPM_KEY_FLAGS keyFlags;
TPM_AUTH_DATA_USAGE authDataUsage;
TPM_KEY_PARMS algorithmParms;
UINT32 PCRInfoSize;
TPM_PCR_INFO pcrlnfo;
TPM_STORE_ASYMKEY keyData;

} TPM_KEY_LOADED;

// Size of TPM_KEY_LOADED in bytes: 551

structure called TPM_KEY_SRK for a symmetric SRK with
128 bits key length, shown in listing 1. With this change, we
can replace the structure TPM_KEY of size 829 bytes with
a TPM_KEY_SRK of only 123 bytes. The symmetric SRK
structure thus saves us 706 bytes of heap memory or 85.16%
compared with an asymmetric SRK.

Deploying a symmetric SRK is not without drawbacks. By
introducing a symmetric SRK, we effectively make (the op-
tional) migration impossible. Also, an authenticated encryp-
tion mode must be used when the SRK is applied, i.e. the
support for such an algorithm must be arranged. For our
implementation such a mode is provided within the secure
environment.

6.2 Keyslot minimization

As already mentioned, RSA keys consume high amounts
of space. Even with the SRK optimization, an MTM still
needs signing keys and verification keys. While accepting
this fact, our code provides the option to further minimize
the required space for a loaded key and also the necessary
number of simultaneously loaded keys in such places where
the optimizations neither endanger interface compatibility
nor the security of the solution.

For a minimization of the key size we modified the com-
mand TPM LoadKey2 (TPM_LoadKey is not required for
an MRTM), such that it loads only the private part of the
key together with the accompanying management informa-
tion. For internal keyslots, we introduced a lightweight ver-
sion of the TPM_KEY structure, the TPM_KEY_LOAD-
ED (listing 2). In it, we omit the structure member for
the public key. As a result, we traded run-time for saved
memory, since now whenever the public part of a loaded
RSA key is required, it has to be re-computed from the
private component. The savings are nevertheless notable:
The TPM_KEY_LOADED structure is 278 bytes or 33.5%
smaller than the TPM_KEY (551 bytes) structure.

The second approach is to limit the number of keyslots. To
verify or certify a loaded key with an earlier loaded key, the
MTM would require a minimum of two keyslots. But for
an MRTM no user keys necessarily need to be supported.
Consequently, we constrain the key hierarchy rooted at the
SRK. In our implementation, we declare the (symmetric)
SRK as the only possible parent key for new keys created
by the command TPM_CreateWrapKey. This restricts the
key hierarchy depth to one, and opens up the possibility to
implement only one keyslot, since the SRK is supposed to
be always present in the MRTM.

Limiting ourself to only one keyslot causes a few additional
problems. The compulsory command TPM_CertifyKey in
an abstract sense requires two keys to be simultaneously



loaded — the one key being certified as well as the certifying
key. Here, we move the computational steps related to the
certified key from TPM_CertifyKey to TPM_FlushSpecific
— the command used to evict the keys after operating on
them. In more detail, every time a key is flushed, we check
if this specific key is eligible to be certified. If it is, we
create the certification information of this key according to
the specification of the command TPM_CertifyKey[20, Part
3: Commands, p. 130] and store this information in the
state along with the key handle and usage authorization —
information that is needed for the actual certification.

The side-effect of this will be that from an interfacing
perspective the following ordered command sequence has to
be executed to get a key certified:

1. Load the key which shall be certified into the MRTM
2. Flush this specific key

3. Load the certification key into the MRTM

4. Call TPM CertifyKey

The process is counter-intuitive, but it does not modify
any interfaces. The memory trade-off is 156 bytes vs. the
size of a second keyslot (551 bytes). The code size is not af-
fected, because we simply move the corresponding logic from
one command to another. The overall run-time increases
slightly, since we generate the certification information ev-
ery time an eligible key is evicted.

Verification keys are also loaded into the same keyslots
inside the MRTM as TPM keys and hence the constraint to
one keyslot affects them as well. The design of the MRTM
implies that the sole keyslot needs to be occupied by a ver-
ification key, when a new verification key should be loaded
into the MRTM (with the exception of the root of the vali-
dation hierarchy, which is validated by the RVAI). In order
to maintain a verification key hierarchy that is more than
one level deep, we implemented an implicit substitution of
a loaded verification key for one of the next-level keys dur-
ing the operation of the MTM_LoadVerificationKey. As the
parent key in this instance is implicitly evicted, we added
a vendor specific bit to the usageFlags of the TPM_VER-
IFICATION_KEY structure, that indicates whether a key
can be implicitly evicted in this manner. Of course the de-
cryption of the key data (when necessary) and verification
of the child key by means of the parent key are conducted
inside the secure environment before the parent key will be
substituted by its descendant.

6.3 Sealing versus binding on an MRTM

As was mentioned, a storage key requirement is to be
equivalent in strength to a 2048-bit RSA key. However, seal-
ing can only be done with keys of that type. This causes a
dilemma, since accommodating for even a single 2048-bit se-
cret key in the state adds in the order of 1kB to the memory
consumption. On the other hand, if we do not allow for the
generation of 2048-bit TPM storage keys, the only allowed
seals are such that are done with the (symmetric) SRK itself.
We chose the latter option, with the following motivation:

Both sealing and binding operations are used to encrypt
data asymmetrically. While the binding is performed out-
side the MTM with the public key of a binding or legacy key,
the sealing of data is achieved inside the MTM by an invo-
cation of the TPM_Seal command with a storage key as the
only possible key type parameter. Conceptually the main
difference between sealing and binding is that the sealed
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data includes a statistically unique value (tpmProof) bound
to the specific MTM, device and current owner. The binding
includes no such parameter.

In our MRTM implementation, we do not support (the
optional) migration, i.e. all keys are implicitly bound to the
MRTM. Further, for us every binding key is a “leaf key” in
a hierarchy rooted at SRK. In the absence of TPM Take-
Ownership, the SRK has to be pre-installed and will never
change for this MRTM. In this setting, the binding function-
ality is close to the sealing functionality. Both TPM_Unbind
and TPM_Unseal are only possible on the same MRTM with
the same owner.? Thus, a service may use binding as a
close approximation for sealing (i.e. to use keys other than
the SRK), especially as it has the possibility to “seal” with
keys of length 1024 bits using the PKCS#1 v1.5 encryption
scheme.

6.4 Separating keys from state

In addition to minimizing the available keyslots, a further
approach involves the evacuation of the remaining perma-
nent keys in the MTM, including the AIK and the above-
mentioned symmetric SRK. Wrapping of these keys is not
addressed in the specifications and hence neither AIK nor
SRK has a parent key to encrypt their private key when or
if stored outside the MTM.

In our implementation of the MRTM, the outset is to make
use of an underlying secure environment as an operating en-
vironment. We turn to this environment for the RTS any-
way, and we now separate the AIK from the state — the
state vector only contains a binding to the right AIK, which
is separately sealed for the platform and only brought into
the secure environment when needed. In essence, we par-
tially split up the MTM state, where the AIK part is being
used only with a few commands.

To provide the binding between the state and the perma-
nent keys we overload the state parameter integrityCheck-
RootData to include all needed digests in an ordered se-
quence, i.e.

SHA1(SHA1(AIK) || SHA1(RVAI) || SHA1(SRK))

When loading any of the related keys, the calling driver
will upload the needed key along with the hash values of
the other two. The secure-side code will re-calculate and
validate the integrityCheckRootData. If the pre-image re-
sistance of the hash function holds, the overloading is no
less secure than the original use of integrityCheckRootData
with only the SHA1(RVAI) as its content.

6.5 Symmetric verification keys

As an option, we also support symmetric verification keys.
That entails certain restrictions to the verification key chain.
The specifications define, that the keyData field of a verifi-
cation key “MUST contain a cryptographic key for a cryp-
tographic primitive of strength comparable to at least 3DES
CBC-MAC. [...] IF this key is a symmetric key THEN the
confidentiality AND integrity of the structure MUST be pro-
tected.” [17, p. 26, 1. 1-4]. We achieve the integrity and

2A subtle difference is also that for sealing operation the
data can be bound to a specific platform configuration,
i.e. certain PCR values at the time of the sealing or some
other point of time. The bind command enforces no such pa-
rameter, instead platform state enforcement can be defined
for the wrapping key.



confidentiality by encrypting the verification key data with
the key data of its parent key. Because the verification key
structure contains either a symmetric key or the public part
of an asymmetric key, the private part is not immediately
available for a loaded asymmetric verification key and must
be provided from outside the MTM. Clearly, the decryption
of a symmetric key with an asymmetric parent key would
require kilobytes of work-space in the secure environment,
so we disallow asymmetric parent keys for symmetric veri-
fication keys. This constraint can be stated as “the parent
key of a symmetric verification key must be symmetric” and
implies that symmetric verification keys are only possible in
the beginning of a verification key chain where the RVAI
binds a symmetric verification key. The integrityCheckData
of a symmetric verification key is computed as a 3DES CBC-
MAC with the key of its parent.

7. OTHER SIZE OPTIMIZATIONS

7.1 MRTM internal state size minimization

In addition to the keyslots, we also minimize the rest of
the state by implementing only state data that is actually
used in an MRTM. Compared to the definitions in the MTM
and TPM specifications we can achieve significant savings.
In particular, most of the data required for changing own-
ership and all data related to locality is unnecessary. For
an MRTM the owner is a remote party without physical
access to the device, and locality is forbidden by the specifi-
cation if verified PCRs are deployed. We only accommodate
for two simultaneous authorization sessions® to the TPM —
the minimum needed to support the mandatory commands
— and 16 PCRs. We implement only two counters (Coun-
terRIMProtect and CounterBootstrap) and omit the Coun-
terStorageProtect, since it is not used by any command and
a storage statefulness feature can be assumed to be present
on the underlying platform. With this counter set, the com-
mand TPM_IncrementCounter is dedicated to the Counter-
RIMProtect and hence its implementation becomes smaller.
Appendix B lists the most compressed internal (non-key)
structures.

7.2 TTP for issuing internal RIM certificates

A “Trusted Third Party” with a knowledge of the verifica-
tionAuth of an MRTM is able to create internal RIM certifi-
cates for that specific MRTM. E.g. a manufacturer is most
likely such an entity, if it sets up the MRTM state at the
time of device manufacture. These internal RIM certificates
are equivalent to those generated by the TPM_InstallRIM
command on that MRTM. The system could be used e.g. to
issue RIM certificates for devices in the field or to increment
the bootstrap counter during firmware updates. As a conse-
quence, this concept makes the TPM_InstallRIM command
on the device superfluous.

8. CODE SIZE MEASUREMENTS

The commands and sub-routines total 17840 bytes (ARM
compilation). Only 2290 bytes are required for the MRTM
state. This small footprint is achieved through the struc-
tural improvements and modifications described in section 6
through 5, and the optimizations of the command logic. We

3FEach session can be either object-independent (OTIAP) or
object-specific (OSAP).
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believe that the code is still to most parts compliant with
the MTM specification v.1.0 — if we accept the fact that un-
necessary but mandatory commands are left unimplemented
and that some commands must be executed in a predefined
order to reach a given end goal.

Table 8 lists the sizes of the individual MRTM commands
in descending order. Common subroutines, which are partly
implemented as inline functions, are omitted from this ta-
ble. The commands that require asymmetric cryptography
clearly constitute the major part of the aggregated size, even
though the cryptographic primitives themselves are provided
by the environment. The command TPM_ChangeAuth “suf-
fers” from the fact that the involved encryption key can be
either symmetric or asymmetric. Further, the command in-
volves both decryption and encryption routines. The same
argument is valid for commands related to key management
and sealing — all involve several cryptographic functions like
key generation, (asymmetric) encryption and decryption,
and operations related to digital signatures.

9. PERFORMANCE

The usability consequences of MTM performance cannot
be overlooked. With the introduction of support for secure
boot, the speed of the trusted module will be directly mir-
rored in device boot-up times. For our design, the critical
issues in terms of performance are a) the invocation times of
the secure environment including the internal validation of
the collection and b) the penalty caused by the need for state
protection implemented by the collection. Both are issues
not typically present in TPMs implemented as standalone
ASICs. Otherwise, the internal speed of the implementa-
tion was from the start not believed to be an issue (and our
measurements confirm this fact), since the logic in our de-
sign by definition is executed at the same cycle speed as the
main ASIC.

The performance of our design is measured on an off-the-
shelf Nokia N96 device, running an ARM9 core at 332 MHz.
The core includes the M-shield security architecture. Time
measurements for our design, as well as the ones for the
TPMs added for comparison, were done at the TDDL layer
in the OS driver — for the use case of secure boot we believe
this to be the right reference point. In the Nokia N96 the
OS was Symbian, and, in other cases Linux. The TPM-
enabled PCs were machines with processors in the GHz
range (2.3GHz, 1.6GHz).

Table 9 summarizes our comparison findings in terms
of execution time. All measurements were done as av-
erages over 10000 trusted module invocations. Measure-
ments of our design secured the entire MTM state using
a platform-optimized AES-CBC with an embedded SHA1
integrity check. Using a size-optimized, authenticated en-
cryption mode (AES-EAX) for state protection, bumped the
baseline time for entry + exit from around 11 ms to 160 ms,
clearly indicating the dominance of the state protection al-
gorithm in terms of achieving speed. Overall, the results
show that the disembedded implementation approach, us-
ing an integrated secure “domain”, is competitive in terms
of performance, even on a device with a comparably slow
application processor. The measurements also indicate that
the TPM/MTM logic itself is not the bottleneck in terms
of performance, rather communication channels and in our
case I/O design approaches are the likely causes for slow
MTM/TPM interaction. Re-visiting the secure boot use



Command

| Size (bytes) ]| Command

| Size (bytes)

TPM_ChangeAuth 1774 || TPM_IncrementCounter 514
TPM_CertifyKey 1606 || TPM_FlushSpecific 454
TPM_CreateWrapKey 1534 || MTM_VerifyRIMCert 432
TPM_LoadKey2 1430 || MTM_IncrementBootstrapCounter 410
MTM_LoadVerificationKey 1422 || TPM_GetPubkey 394
TPM_Seal 1112 || TPM_Extend 292
TPM_Unseal 980 |[ TPM_ReadCounter 224
MTM_VerifyRIMCert AndExtend 898 || TPM_OIAP 212
TPM_Quote 792 || TPM_PCRRead 144
TPM_Sign 772 || TPM_GetRandom 138
TPM_OSAP 580

Table 1: Sizes of the implemented commands

| [ TPM_OIAP | TPM_OSAP | TPM_PCRRead | TPM Extend |

NRC MRTM/M-Shield | 11.6ms [ 12.0ms [ 11.5ms | 11.6ms
Ubuntu Linux 9.04 with 2.6.24-19-generic kernel
Atmel AT97SC3201 12.02ms 25.00ms 11.36ms 11.29ms
Atmel AT97SC3202 35.94ms 35.99ms 35.41ms 35.42ms
Broadcom BCM5755 24.01ms 24.00ms 23.34ms 23.30ms
Ubuntu Linux 9.04 with vanilla 2.6.24 kernel
Atmel AT97SC3201 6.01ms 20.94ms 6.11ms 8.05ms
Atmel AT97S5C3202 17.99ms 23.99ms 17.26ms 17.06ms
Broadcom BCM5755 12.58ms 12.59ms 12.00ms 12.00ms

Table 2: Performance comparison

case, the VerifyRIMCert command executes in 12ms on the
Nokia N96 platform, showing that the use of MTM is not
prohibitively expensive, when used as part of secure boot.

10. SECURITY ANALYSIS

The disembedded approach for implementing the MTM
will open up some new attack vectors when compared to
a straight-forward monolithic software implementation. We
informally list the identified issues and outline the applied
solutions.

1. Code integrity: The integrity of the MRTM is gov-
erned by the RTV. In the disembedded design, the
RTV extends over the lifetime of the MRTM, in that
the code collection to be executed will be validated not
only once, but prior to every execution.

2. Data integrity and confidentiality: In the MRTM
implementation, the state is protected either by au-
thenticated encryption (AES-EAX) with a platform
specific key and a 16-byte random IV, or alternatively
with an AES-CBC encryption with a random IV, in-
tegrity protected with an embedded SHA-1 in prefix-
suffix mode 4.

3. Data state freshness: An MRTM-specific vector of
latest-used random IVs is maintained within the secure
environment. Only these IVs are acceptable for state
decryption, guaranteeing state freshness.

4. Binding session state/MRTM selection: The
state uniquely defines an MRTM instance in case an
authenticated session, i.e. OIAP or OSAP, is used. The

4The reason for including the AES-CBC is speed, since the
mode is hardware-optimized on the target device.
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instance manager may address non-authenticated com-
mands (like TPM_PCRRead) to the wrong instance,
but for these commands, no authenticity guarantees
are given anyway.

5. Binding command and collection: All collections
are treated equal by the secure environment (they are
run, if the signature validates). Thus the instance
manager could potentially activate the wrong collec-
tion for a given command. By mandating (in the col-
lection) the matching of the command parameter in
the request to the invoked function set, this threat is
eliminated.

6. Completeness of RTM: Like indicated above, our
current secure environment will accept any properly
signed binary. This is a common issue to many de-
ployed security environments and the implication is
that the RTM is partly undefined — the device manu-
facturer or integrator can in principle sign some new
code for the underlying architecture that potentially
violates the integrity and isolation property of the
MRTM. For now, the manufacturer has to be trusted
not to issue such a signed piece of code.

Also, a concern with the storage hierarchy and the sealing
being based on a symmetric primitive is that the amount of
data, i.e. wrapped keys and seals, directly encrypted with
the SRK may grow enough to weaken the confidentiality of
the SRK. This bound is algorithm-specific, and can be coun-
terbalanced e.g. by the MRTM limiting the data encrypted
with the SRK.

11. SPECIFICATION SHORTCOMINGS

While implementing our MRTM, we encountered a few
logical inconsistencies in the MTM v.1.0 specification [17].



First, when the MTM_IncrementBootstrapCounter com-
mand is called with a RIM certificate, whose integrity Check-
Data verifies successfully, but whose counter reference is not
consistent with the platform, the specified return value is
TPM _Success, even though CounterBootstrap has not been
incremented. A more logical return error value would be,
for example, TPM_BadCounter.

Second, the MTM_VerifyRIMCert computes the reference
value for the integrityCheckData of a RIM certificate in a
different way than the command MTM_InstallRIM — the for-
mer creates the integrityCheckData with integrity CheckSize
set to zero and the latter does not. As a consequence, a RIM
certificate created with MTM_InstallRIM can not be verified
with MTM_VerifyRIMCert. Consistency can be achieved by
setting the value to zero in both commands.

The findings have been reported back to the TCG MPWG.

12. FURTHER WORK

We still foresee further optimization opportunities. In the
current architecture, the MRTM state (except AIK) is han-
dled as a single encrypted and integrity-protected blob. This
is inefficient, since a single command (collection) typically
addresses only a small subset of the state. Additionally, a
significant part of the state is/can be static. Finally, main-
taining confidentiality is irrelevant for most of the informa-
tion stored in the state. These aspects clearly indicate room
for further optimization related to state handling, with gains
to be expected both in terms of memory consumption and
execution speed.

Improved or better utilized hardware support within the
TrEE can further minimize the MRTM footprint. Counters
can make use of persistent counters in HW, flags and PCRs
could be realized as hardware registers. Immutable parts of
the state can be made part of a secure ROM dedicated for
the MRTM.

For devices, where strict interoperability is not an issue,
further trade-offs in favor of smaller footprint can be done.
One such issue is byte-ordering. Initial tests indicate that
6.4% of the compiled code in a little-endian device (ARM)
is used to accommodate the specification-imposed network
byte-order. By sacrificing compliance, the savings are im-
mediately available. Also, from our key-size optimization
choices presented in earlier sections it is evident that re-
moving the support for asymmetric keys could be done with
quite limited impact on functionality. This could be a choice
for implementing MTMs on classes of even more limited
and less expensive embedded devices. Many low-end pro-
grammable controllers today include security features like
embedded keys and symmetric cryptography, but cannot
still accommodate e.g. RSA within the given price range.

In order to reach production quality, the MTM code still
needs to pass stringent testing and validation. If this affects
code-size, the disembedding architecture allows us to adjust
the collection count and thereby increase the “available code
space”. The same argument allows us to later augment the
command coverage of our implementation to also incorpo-
rate optional and MLTM-specific commands.

13. CONCLUSIONS

We described a software implementation of a minimal
MRTM that runs in hardware-enforced isolation inside the
trusted execution environment of a Nokia N96 handset. Even
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will all optimizations active, the code is with a few minor
exceptions compliant with the MTM v1.0 specification, and
as a monolithic compilation it can execute in 20kB of RAM
encompassing both code and data. We achieved this small
footprint by reducing the data structures to a specification
compliant minimum and optimizing the command logic to
comply with the highly specialized demands of an MRTM.
Our architecture makes use of and adapts recent research
for disembedded TPM implementations to achieve the nec-
essary size and performance parameters. Moreover, we de-
scribed the use of symmetric keying for MTM — for now as
an optimization feature, but also as a possible further direc-
tion for highly specialized trusted modules in the embedded
domain. We proved the viability of the selected architecture
by performance measurements.
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APPENDIX

A.

AIK

AP

ASIC

ABBREVIATIONS

Attestation Identity Key
I Application Programming Interface
Application Specific Integrated Circuit

DAA Direct Anonymous Attestation
DRTM Dynamic Root of Trust Measurement
EK Endorsement Key

HW Hardware

I/0 Input/Output

Iv Initialization Vector
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Mobile Local-owner Trusted Module

MRTM Mobile Remote-owner Trusted Module
MTM Mobile Trusted Module

MPWG  Mobile Phone Work Group

oS Operating System

PCR Platform Configuration Register

RAM Random Access Memory

RIM Reference Integrity Metric

ROM Read-Only Memory

RTE Root of Trust for Enforcement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

RTV Root of Trust for Verification

RVAI Root Verification Authority Information
SoC System-On-Chip

SRK Storage Root Key

TCG Trusted Computing Group

TDDL Trusted Software Stack Device Driver Library
TPM Trusted Platform Module

TrEE Trusted Execution Environment

TTP Trusted Third Party

B. COMPRESSED STRUCTURES

typedef struct tdTPM_PCR_ATTRIBUTES {
BOOL pcrReset;

} TPM_PCR_ATTRIBUTES;

// Size of TPM_PCR_ATTRIBUTES in bytes: 1

typedef struct tdTPM_PERMANENT_FLAGS {
TPM_STRUCTURE_TAG tag;
BOOL disable;
BOOL FIPS;
BOOL readSRKPub;
} TPM_PERMANENT_FLAGS;
// Size of TPM_PERMANENT_FLAGS in bytes: 5

typedef struct tdTPM_STCLEAR_FLAGS {
TPM_STRUCTURE_TAG tag;
BOOL deactivated;

} TPM_STCLEAR_FLAGS;

// Size of TPM_STCLEAR_FLAGS in bytes: 3

typedef struct tdTPM_STANY_FLAGS {
TPM_STRUCTURE_TAG tag;
BOOL postlnitialise;

} TPM_STANY_FLAGS;

// Size of TPM_STANY_FLAGS in bytes: 8

#define TPM_SESSIONS 2

typedef struct tdTPM_STANY_DATA {
TPM_STRUCTURE_TAG tag;
TPM_SESSION_DATA sessions[TPM_SESSIONS];

} TPM_STANY_DATA;

// Size of TPM_STANY_DATA in bytes: 98

#define TPM_NUM_COUNTER 1
#define TPM_NUM_PCR 16

typedef struct tdTPM_PERMANENT_DATA {
TPM_STRUCTURE_TAG tag;
BYTE revMajor;
BYTE revMinor;
TPM_NONCE tpmProof;
TPM_KEY srk;
TPM_COUNTER_VALUE monotonicCounter|
TPM_NUM_COUNTER];

TPM_PCR_ATTRIBUTES pcrAttrib[TPM_NUM_PCR];

} TPM_PERMANENT_DATA;
// Size of TPM_PERMANENT_DATA in bytes: 173

typedef struct tdTPM_STCLEAR_DATA {
TPM_STRUCTURE_TAG tag;
TPM_COUNT_ID countlD;
TPM_PCRVALUE PCR[TPM_NUM_PCR];

} TPM_STCLEAR_DATA;

// Size of TPM_STCLEAR_DATA in bytes: 326



