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Motivation

. Application framework internals still largely a black box
- How do internals influence platform security and user-privacy

. Every security analysis requires a solid foundation

- How to analyze the target in the first place?

- Any platform-specific peculiarities
that iImpede a static analysis?
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Motivation

- Lot of work established such knowledge for apps
- Entry points (Chex, FlowDroid)
. Generation of a static runtime model (FlowDroid, R-Droid, Epicc)
. Sources/sinks (SuSi)

- Yet, such a knowledge base Is missing for the
application framework

. System services provide core functionality
. Existing knowledge from app analysis can not be transferred
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- CISPA
Contributions

. Systematic methodology on how to statically analyze
the application framework

- How to enumerate framework entry points
- How to generate a precise static runtime model

. Re-Visiting permission specification analysis
- More precise permission mappings for SDK / framework

. Study Internals of Android’s permission system

- How to classify sensitive operations guarded by permission checks
- Where are permissions checked?
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How to analyze the framework




- - CISPA
Analysis Ingredients

How to enumerate framework entry points?

#1
How to generate a static model that approximates
runtime behavior?

#2
What are the sensitive sinks within the framework?

#3
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Framework Entry Points (#1)

- What functionality I1s exposed to app layer?

. Key observation: Functionality only exposed via Binder-IPC
. Entry class enumeration via class hierarchy analysis

[ lInterface ]

exte MN@”C‘S

. ADLIF || Non-AIDL-IF |

[ Proxy ] [ S’[}Jb ] [ Native ] [ Proxy ]

1
extends extends

[ Service ] [ AMS ]

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis



Static Runtime Model (#2) i

- Framework services follow the principle of separation of duty

- Highly responsive to process simultaneous gueries from
multiple clients (apps)

- Various concurrency pattern that complicate static analysis

- Handler
- AsyncChannel (framework only)
- StateMachines (framework only)
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Static Runtime Model - Handler

- Many services have a dedicated handler to process messages in a
separate thread

public void enable() {
Message msg = mHandler.obtainMessage(MESSAGE ENABLE)

Runtime . mHandler.sendMessage(msg); Message/
type } code

class BluetoothHandler extends Handler {
public void handleMessage(Message msg) {

- switch (msg.what) {

Path | case MESSAGE_ENABLE: // do_enable

sensitivity case MESSAGE DISABLE: // do _disable
_ // other cases

11}
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Protected Resources (#3)

Concept of sources/sinks a list of APIs is no longer applicable
- Analysis now shifts into the framework API

- How do we classify sensitive functionality?
. Consider permission checks as guards of sensitive operations

Protected resources are security-sensitive operations
that have a tangible side-effect on

ey
. the system state or Lﬁ‘?
| =

- use of privacy
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Taxonomy of Protected Resource Types

- No ground truth so far, thus we manually investigated 35 entry
points from different services

. Diversity of operations forced us to create higher-level classification
on operation types

— 4
Native method
. Invocation
Protected resource —[ Broadcast sender
4
- Throw

_ RuntimeException
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Use-Case: Permission Analysis




More Effort = Better Results?

. Generating precise graphs requires a lot of resources

- Do we perform better than existing work?

- Re-visit Android permission mappings! THE ARTOF

<
>
. . . . U
- Why? Still, one of the major security mechansim U
- Important for app developers & security research GZ)

. Compare with state-of-the-art tool PScout (API 16)
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Android Permission Mappings - Framework

- Map framework entry points
to required permissions

. Approach: Forward
control-flow slicing

. String analysis to resolve

.. . Permission checks
permission strlngs

Framework / undocumented map

Framework entry point — List of required permissions

com.android.phone.PhonelnterfaceManager.getDeviceld() — android.permission.READ PHONE_ STATE
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Framework APl Mapping

# of APl to permission mappings

B axplorer
I 1012 PScout

32304

# mappings

0 5000 10000 15000 20000 25000 30000 35000

* PScout includes normal + dangerous permissions

» axplorer additionally includes system + systemOrSignatures
permissions
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Framework APl Mapping

 |Less false mappings

: . m axplorer
» Reduced over-approximation I1012 PScout
through more precise call-graphs

32304

# mappings

0 5000 10000 15000 20000 25000 30000 35000

* Entrypoint definition ensures
valid mappings
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Android Permission Mappings - SDK

Android app framework

Permission checks

Framework / undocumented map

SDK / documented map
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SDK Mapping (1)

Number of permissions required by documented APIs
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SDK Mapping (1)

. Connecting SDK to framework ‘0 mEEE

350

Center for IT-Security, Privacy

eliminates false-mappings . sapoe U0 oae)
o0 PScout (total: 469)
. . 250
- Mappings with non-entry methods
are ruled out 150
= _ = " " 100
- Path-sensitivity in Handler 50 8 = 33 o
.. : B 4 o 4 0 1 AN
eliminates outliers 0 BN S 4 7
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Number of documented APIs that require a specific permission
- [

ser warpaccr N, 5c
N 10
SROADCAST STICKY 9_48
sLueroorr N, 5
wake Lock N 0
N 45
I, -
ACCESS_FINE_LOCATION 34 N axplorer
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ACCESS_COARSE_LOCATION 5

0
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SDK Mapping (2)
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Permission Locality

Services follow the principle of separation of duty
- How are permission checks distributed?

Across API versions ~20% of permissions are checked
In >1 class and at most in 10 classes

- This equally affects all protection levels (dangerous, system,..)

There Is a trend towards more checks in more classes
IN newer Android versions

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

22



Permission Locality

Locality measured in terms of number of distinct classes that
check a given permission

High permission locality
Permission is checked/enforced at a single service

- SET WALLPAPER Is only enforced at WallpaperManagerService

Low permission locality
Permission Is enforced at different (possibly unrelated) services
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Low Permission Locality

- Framework APl 16 (4.1.1)
. Permission: READ_PHONE_STATE PhoneSubInfo

internal.telephony.

- Level: dangerous phone.

PhoneInterfaceManager

server.
| — TelephonyRegistry

server.net.
NetworkPolicyManagerService

System app
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Low Permission Locality

- Framework APl 22 (5.1) |
internal.telephony.
- Permission: READ PHONE_STATE PhoneSubInfoProxy

- Level: dangerous internal.telephony.

SubscriptionController

phone.
PhoneInterfaceManager

server.

TelephonyRegistry

server.net.
NetworkPolicyManagerService
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Permission Locality

. Locality steadily decreases between new Android versions
- Impedes understanding the big picture of Android permissions

. Single enforcement point for permissions?
- Facilitates policy generation for access control frameworks (ASM/ASF)

- How to establish?

- |dentify owning class/service for each permission
- Dedicated permission check method that is exposed via linterface
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Conclusion

. Comprehensive and systematic methodology on how to analyze
Android’'s application framework

. First high-level classification of protected resource types

- Re-Visited permission analysis
- Improved on prior results of SDK / framework mappings

- Permission locality improves understanding of permission system

- Check out www.axplorer.org

=]
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