On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis

Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and Sebastian Weisgerber

USENIX Security Symposium
Austin, August 12th, 2016

CISPA

Center for IT-Security, Privacy
and Accountability

Center for IT-Security, Privacy

Motivation

. Application framework internals still largely a black box
- How do internals influence platform security and user-privacy

. Every security analysis requires a solid foundation

- How to analyze the target in the first place?

- Any platform-specific peculiarities
that iImpede a static analysis?

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

Motivation

- Lot of work established such knowledge for apps
- Entry points (Chex, FlowDroid)
. Generation of a static runtime model (FlowDroid, R-Droid, Epicc)
. Sources/sinks (SuSi)

- Yet, such a knowledge base Is missing for the
application framework

. System services provide core functionality
. Existing knowledge from app analysis can not be transferred

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 3

- CISPA
Contributions

. Systematic methodology on how to statically analyze
the application framework

- How to enumerate framework entry points
- How to generate a precise static runtime model

. Re-Visiting permission specification analysis
- More precise permission mappings for SDK / framework

. Study Internals of Android’s permission system

- How to classify sensitive operations guarded by permission checks
- Where are permissions checked?

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 4

RONT USB

-
»

FOR

1 -~
e
v

'

135 SHORT

~

AT40

1,,
R224
E=

BC32
f
! tc2y ¢12
" L oS R257
2 y— e
F E .ﬂ -~ —rb_
v - t
5 .M..rrn"nr i MN.N,
A.Mw & &) IO OO »ﬂh_
< .
e o o Lo R o fla
o ZESERE=EIE
L L
e obsl | lopdolal
I Bc4d [<inl | Pl
- N - SHEER T ST IS 30N 471 e i) A4 3 w ol B P P | |
= AN £ = 1ok | |
= L3 G =) (“ acas 12 | | -
o _] | 99 | &S G _,
W L L — _ . . T
o 125 : _ R10S L
1 s = . RIS _C77)
- *

oz

9188C4C78 RO/

“1 R108

! ! | +
{ » |
R1Y RI20 : ,
f } M s _ M '
AN -
L ORm22 : wﬁ ‘ TS
_ i EO ._ m @ _ W
- . <
55 R127 | .
BCSS M127 ummmwm
. o ooo.oo..o.oc . o'ooocoo.ooooovooo- k ! ! g n!ﬂ. o
C 136 . \ Mg .
‘ ' - G
LRI INGR S L0010 s J L. CecneEN ¢
— e ol
8C76 28 S e
BC7? U ks ‘ S _ :

v —

- g " = |12
_C90 VCORE 1.8V HM . DW o | Ea22
|
0

4 12.2v |2.8Y 12.9V 132y
s UA R e i g e :
07) Iy TOPt KIOPEN [OPEN IOPEN [OPEN 230! | s
" Jr2%2 V2 JP10 {OFENICLOSEIOPEN JOPEN ICLOSE] e
() I3 JP11_|OPENIOPEN [CTOSEICTOSEICLOSE \
v FRONT USB £027

29[UP1AUPTHIPI6EPUCLK g os LB

-_4
gl82

‘S‘#?A‘“&G

: " 2 0 ON ION |ON {50MHZ PRVEPET RS —

QOO x

ON_[OF FIOF F [60MHZ Vg qee S w0
L
|

VIS w0 T

> 9 | [OFFIOFFIOFF66MHZ ggEEeess)
OFFION [ON [75MKZ | [FE

— — - —
g P .. ﬂl] |~ b LA wd —
s BEEXE ZT TS 1 5 oy g o Iy D "y ’ U
: dEEESsinigldiJSe SEC—IDESswr pz2 s o " 3 pe o
- >~ =

........

o

A e e e, O T s ®) o |

wN7

How to analyze the framework

- - CISPA
Analysis Ingredients

How to enumerate framework entry points?

#1
How to generate a static model that approximates
runtime behavior?

#2
What are the sensitive sinks within the framework?

#3

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 6

Center for IT-Security, Privacy
and Accountability

Framework Entry Points (#1)

- What functionality I1s exposed to app layer?

. Key observation: Functionality only exposed via Binder-IPC
. Entry class enumeration via class hierarchy analysis

[lInterface]

exte MN@”C‘S

. ADLIF || Non-AIDL-IF |

[Proxy] [S’[}Jb] [Native] [Proxy]

1
extends extends

[Service] [AMS]

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Static Runtime Model (#2) i

- Framework services follow the principle of separation of duty

- Highly responsive to process simultaneous gueries from
multiple clients (apps)

- Various concurrency pattern that complicate static analysis

- Handler
- AsyncChannel (framework only)
- StateMachines (framework only)

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 8

Center for IT-Security, Privacy

Static Runtime Model - Handler

- Many services have a dedicated handler to process messages in a
separate thread

public void enable() {
Message msg = mHandler.obtainMessage(MESSAGE ENABLE)

Runtime . mHandler.sendMessage(msg); Message/
type } code

class BluetoothHandler extends Handler {
public void handleMessage(Message msg) {

- switch (msg.what) {

Path | case MESSAGE_ENABLE: // do_enable

sensitivity case MESSAGE DISABLE: // do _disable
_ // other cases

11}

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 9

Protected Resources (#3)

Concept of sources/sinks a list of APIs is no longer applicable
- Analysis now shifts into the framework API

- How do we classify sensitive functionality?
. Consider permission checks as guards of sensitive operations

Protected resources are security-sensitive operations
that have a tangible side-effect on

ey
. the system state or Lﬁ‘?
| =

- use of privacy

i

v

Sl

S :

w .’/
. &
i

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 10

Taxonomy of Protected Resource Types

- No ground truth so far, thus we manually investigated 35 entry
points from different services

. Diversity of operations forced us to create higher-level classification
on operation types

— 4
Native method
. Invocation
Protected resource —[Broadcast sender
4
- Throw

_ RuntimeException

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

11

Use-Case: Permission Analysis

More Effort = Better Results?

. Generating precise graphs requires a lot of resources

- Do we perform better than existing work?

- Re-visit Android permission mappings! THE ARTOF

<
>
. . . . U
- Why? Still, one of the major security mechansim U
- Important for app developers & security research GZ)

. Compare with state-of-the-art tool PScout (API 16)

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

13

Android Permission Mappings - Framework

- Map framework entry points
to required permissions

. Approach: Forward
control-flow slicing

. String analysis to resolve

.. . Permission checks
permission strlngs

Framework / undocumented map

Framework entry point — List of required permissions

com.android.phone.PhonelnterfaceManager.getDeviceld() — android.permission.READ PHONE_ STATE

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 14

Framework APl Mapping

of APl to permission mappings

B axplorer
I 1012 PScout

32304

mappings

0 5000 10000 15000 20000 25000 30000 35000

* PScout includes normal + dangerous permissions

» axplorer additionally includes system + systemOrSignatures
permissions

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

15

Center for IT-Security, Privacy

Framework APl Mapping

 |Less false mappings

: . m axplorer
» Reduced over-approximation I1012 PScout
through more precise call-graphs

32304

mappings

0 5000 10000 15000 20000 25000 30000 35000

* Entrypoint definition ensures
valid mappings

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 16

Android Permission Mappings - SDK

Android app framework

Permission checks

Framework / undocumented map

SDK / documented map

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy
and Accountability

17

SDK Mapping (1)

Number of permissions required by documented APIs

400

350

300

250

200

150

100

50

0

314

365
m axplorer (total: 352)
PScout (total: 469)
46
33
19
4 0 4 0 0 1 0 1
1 2 3 4 5 6 7

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

18

SDK Mapping (1)

. Connecting SDK to framework ‘0 mEEE

350

Center for IT-Security, Privacy

eliminates false-mappings . sapoe U0 oae)
o0 PScout (total: 469)
. . 250
- Mappings with non-entry methods
are ruled out 150
= _ = " " 100
- Path-sensitivity in Handler 50 8 = 33 o
.. : B 4 o 4 0 1 AN
eliminates outliers 0 BN S 4 7
Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 19

Y 4 <o 7 N v for IT-Security, Privacy
S D K M ap p I I l g (:) and Accountability

Number of documented APIs that require a specific permission
- [

ser warpaccr N, 5c
N 10
SROADCAST STICKY 9_48
sLueroorr N, 5
wake Lock N 0
N 45
I, -
ACCESS_FINE_LOCATION 34 N axplorer
I ¢ PScout
ACCESS_COARSE_LOCATION 5

0

83

62

0 10 20 30 40 50 60 70 30 90

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 20

Center for IT-Security, Privacy

SDK Mapping (2)

e [&

: I\/Ianu_all_y validated the top 4 cer wsiisrocn I ¢ .
permISSIOnS BROADCAST_ STICKY 9_48
. Differences due to SDK analysis BLUETOOTH o
- _ WAKE_LOCK I, 30 45
- Context class difficult to get right rocess rie ocmon M 21 .
(>100 direct and indirect subclasses) e o Loy, B conl

20
0 10 20 30 40 50 60 70 80 90

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis 21

Permission Locality

Services follow the principle of separation of duty
- How are permission checks distributed?

Across API versions ~20% of permissions are checked
In >1 class and at most in 10 classes

- This equally affects all protection levels (dangerous, system,..)

There Is a trend towards more checks in more classes
IN newer Android versions

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

22

Permission Locality

Locality measured in terms of number of distinct classes that
check a given permission

High permission locality
Permission is checked/enforced at a single service

- SET WALLPAPER Is only enforced at WallpaperManagerService

Low permission locality
Permission Is enforced at different (possibly unrelated) services

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

23

Low Permission Locality

- Framework APl 16 (4.1.1)
. Permission: READ_PHONE_STATE PhoneSubInfo

internal.telephony.

- Level: dangerous phone.

PhoneInterfaceManager

server.
| — TelephonyRegistry

server.net.
NetworkPolicyManagerService

System app

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy
and Accountability

24

Low Permission Locality

- Framework APl 22 (5.1) |
internal.telephony.
- Permission: READ PHONE_STATE PhoneSubInfoProxy

- Level: dangerous internal.telephony.

SubscriptionController

phone.
PhoneInterfaceManager

server.

TelephonyRegistry

server.net.
NetworkPolicyManagerService

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy
and Accountability

25

Permission Locality

. Locality steadily decreases between new Android versions
- Impedes understanding the big picture of Android permissions

. Single enforcement point for permissions?
- Facilitates policy generation for access control frameworks (ASM/ASF)

- How to establish?

- |dentify owning class/service for each permission
- Dedicated permission check method that is exposed via linterface

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

26

Conclusion

. Comprehensive and systematic methodology on how to analyze
Android’'s application framework

. First high-level classification of protected resource types

- Re-Visited permission analysis
- Improved on prior results of SDK / framework mappings

- Permission locality improves understanding of permission system

- Check out www.axplorer.org

=]

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Center for IT-Security, Privacy

27

