
On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis

Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and Sebastian Weisgerber

USENIX Security Symposium

Austin, August 12th, 2016

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Motivation

• Application framework internals still largely a black box

• How do internals influence platform security and user-privacy

• Every security analysis requires a solid foundation

• How to analyze the target in the first place?

• Any platform-specific peculiarities

that impede a static analysis?

2

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Motivation

• Lot of work established such knowledge for apps

• Entry points (Chex, FlowDroid)

• Generation of a static runtime model (FlowDroid, R-Droid, Epicc)

• Sources/sinks (SuSi)

• Yet, such a knowledge base is missing for the

application framework

• System services provide core functionality

• Existing knowledge from app analysis can not be transferred

3

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Contributions

4

• Systematic methodology on how to statically analyze

the application framework

• How to enumerate framework entry points

• How to generate a precise static runtime model

• Re-Visiting permission specification analysis

• More precise permission mappings for SDK / framework

• Study internals of Android‘s permission system

• How to classify sensitive operations guarded by permission checks

• Where are permissions checked?

How to analyze the framework

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Analysis Ingredients

6

How to enumerate framework entry points?

How to generate a static model that approximates
runtime behavior?

What are the sensitive sinks within the framework?

#1

#2

#3

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Framework Entry Points (#1)

• What functionality is exposed to app layer?

• Key observation: Functionality only exposed via Binder-IPC

• Entry class enumeration via class hierarchy analysis

7

IInterface

AIDL-IF Non-AIDL-IF

Proxy Stub Native

Service AMS

Proxy

extends extends

extendsextends

implements implements implements implements

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Static Runtime Model (#2)

• Framework services follow the principle of separation of duty

• Highly responsive to process simultaneous queries from

multiple clients (apps)

• Various concurrency pattern that complicate static analysis

• Handler

• AsyncChannel (framework only)

• StateMachines (framework only)

8

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Static Runtime Model - Handler

• Many services have a dedicated handler to process messages in a

separate thread

9

public void enable() {
Message msg = mHandler.obtainMessage(MESSAGE_ENABLE)
mHandler.sendMessage(msg);

}

class BluetoothHandler extends Handler {
public void handleMessage(Message msg) {

switch (msg.what) {
case MESSAGE_ENABLE: // do_enable
case MESSAGE_DISABLE: // do_disable
// other cases

}}}

Runtime

type
Message

code

Path

sensitivity

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Protected Resources (#3)

10

• Concept of sources/sinks a list of APIs is no longer applicable

• Analysis now shifts into the framework API

• How do we classify sensitive functionality?

• Consider permission checks as guards of sensitive operations

• Protected resources are security-sensitive operations

that have a tangible side-effect on

• the system state or

• use of privacy

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Taxonomy of Protected Resource Types

11

Protected resource

Method invocation

Field update

Return value

Throw instruction

Native method

invocation

Broadcast sender

Throw

RuntimeException

• No ground truth so far, thus we manually investigated 35 entry

points from different services

• Diversity of operations forced us to create higher-level classification

on operation types

Use-Case: Permission Analysis

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

More Effort = Better Results?

• Generating precise graphs requires a lot of resources

• Do we perform better than existing work?

• Re-visit Android permission mappings!

• Why? Still, one of the major security mechansim

• Important for app developers & security research

• Compare with state-of-the-art tool PScout (API 16)

13

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Android Permission Mappings - Framework

14

Permission checks

Data-flow

Framework / undocumented map

Framework entry point List of required permissions

com.android.phone.PhoneInterfaceManager.getDeviceId() android.permission.READ_PHONE_STATE

• Map framework entry points

to required permissions

• Approach: Forward

control-flow slicing

• String analysis to resolve

permission strings

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Framework API Mapping

15

32304

1012

0 5000 10000 15000 20000 25000 30000 35000

#
 m

a
p
p

in
g
s

axplorer
PScout

of API to permission mappings

• PScout includes normal + dangerous permissions

• axplorer additionally includes system + systemOrSignatures

permissions

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Framework API Mapping

16

32304

1012

0 5000 10000 15000 20000 25000 30000 35000

#
 m

a
p
p

in
g
s

axplorer
PScout

• Less false mappings

• Reduced over-approximation

through more precise call-graphs

• Entrypoint definition ensures

valid mappings

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Android Permission Mappings - SDK

17

SDK
Permission checks

IPC Data-flow

Framework / undocumented map

SDK / documented map

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

SDK Mapping (1)

18

Number of permissions required by documented APIs

314

34

4 0 0 0 0

365

46
33

4
19

1 1
0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

axplorer (total: 352)

PScout (total: 469)

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

SDK Mapping (1)

19

314

34
4 0 0 0 0

365

46
33

4
19

1 1
0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

axplorer (total: 352)

PScout (total: 469)

• Connecting SDK to framework

eliminates false-mappings

• Mappings with non-entry methods

are ruled out

• Path-sensitivity in Handler

eliminates outliers

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

SDK Mapping (2)

20

20

21

45

62

9

10

83

18

21

30

45

48

58

61

0 10 20 30 40 50 60 70 80 90

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

WAKE_LOCK

BLUETOOTH

BROADCAST_STICKY

SET_WALLPAPER

NFC

axplorer

PScout

Number of documented APIs that require a specific permission

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

SDK Mapping (2)

21

20

21

45

62

9

10

83

18

21

30

45

48

58

61

0 10 20 30 40 50 60 70 80 90

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

WAKE_LOCK

BLUETOOTH

BROADCAST_STICKY

SET_WALLPAPER

NFC

axplorer

PScout

• Manually validated the top 4

permissions

• Differences due to SDK analysis

• Context class difficult to get right

(>100 direct and indirect subclasses)

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Permission Locality

22

• Services follow the principle of separation of duty

• How are permission checks distributed?

• Across API versions ~20% of permissions are checked

in >1 class and at most in 10 classes

• This equally affects all protection levels (dangerous, system,..)

• There is a trend towards more checks in more classes

in newer Android versions

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Permission Locality

23

• Locality measured in terms of number of distinct classes that

check a given permission

• High permission locality

Permission is checked/enforced at a single service

• SET_WALLPAPER is only enforced at WallpaperManagerService

• Low permission locality

Permission is enforced at different (possibly unrelated) services

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Low Permission Locality

24

• Framework API 16 (4.1.1)

• Permission: READ_PHONE_STATE

• Level: dangerous

internal.telephony.
PhoneSubInfo

phone.
PhoneInterfaceManager

server.
TelephonyRegistry

server.net.
NetworkPolicyManagerService

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

internal.telephony.
PhoneSubInfoProxy

• Framework API 22 (5.1)

• Permission: READ_PHONE_STATE

• Level: dangerous

Low Permission Locality

25

internal.telephony.
PhoneSubInfoProxy

phone.
PhoneInterfaceManager

server.
TelephonyRegistry

server.net.
NetworkPolicyManagerService

internal.telephony.
SubscriptionController

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Permission Locality

26

• Locality steadily decreases between new Android versions

• Impedes understanding the big picture of Android permissions

• Single enforcement point for permissions?

• Facilitates policy generation for access control frameworks (ASM/ASF)

• How to establish?

• Identify owning class/service for each permission

• Dedicated permission check method that is exposed via IInterface

Erik Derr - USENIX Sec 2016 - On Demystifying the Android Application Framework: Re-Visiting Android Permission Specification Analysis

Conclusion

• Comprehensive and systematic methodology on how to analyze

Android‘s application framework

• First high-level classification of protected resource types

• Re-Visited permission analysis

• Improved on prior results of SDK / framework mappings

• Permission locality improves understanding of permission system

• Check out www.axplorer.org

27

