Measuring the Effects of Stack Overflow Code Snippet Evolution on Open-Source
Software Security

Alfusainey Jallow, Michael Schilling, Michael Backes, Sven Bugiel
CISPA Helmholtz Center for Information Security, Germany
{alfusainey.jallow, schilling, backes, bugiel} @cispa.de

Abstract—This paper assesses the effects of Stack Overflow
code snippet evolution on the security of open-source projects.
Users on Stack Overflow actively revise posted code snippets,
sometimes addressing bugs and vulnerabilities. Accordingly,
developers that reuse code from Stack Overflow should treat
it like any other evolving code dependency and be vigilant
about updates. It is unclear whether developers are doing so,
to what extent outdated code snippets from Stack Overflow
are present in GitHub projects, and whether developers miss
security-relevant updates to reused snippets.

To shed light on those questions, we devised a method to
1) detect outdated code snippets versions from 1.5M Stack
Overflow snippets in 11,479 popular GitHub projects and
2) detect security-relevant updates to those Stack Overflow
code snippets not reflected in those GitHub projects. Our
results show that developers did not update dependent code
snippets when those evolved on Stack Overflow. We found that
2,405 code snippet versions reused in 2,109 GitHub projects
were outdated, with 43 projects missing fixes to bugs and
vulnerabilities on Stack Overflow. Those 43 projects containing
outdated, insecure snippets were forked on average 1,085 times
(max. 16,121), indicating that our results are likely a lower
bound for affected code bases. An important insight from our
work is that treating Stack Overflow code as purely static
code impedes holistic solutions to the problem of copying
insecure code from Stack Overflow. Instead, our results suggest
that developers need tools that continuously monitor Stack
Overflow for security warnings and code fixes for reused code
snippets and not only warn during copy-pasting.

1. Introduction

The work of software developers is strenuous. To ease
their job, developers seek assistance in different forms, such
as better IDE support, reusable code, accessible guidelines
and best practices, or exchange with other developers. One
internet information source has particularly become popular:
Stack Overflow, the most prominent question-and-answer
site for programmers to share and increase their knowledge.
Stack Overflow is popular among developers because most
answers provide a concise explanation and an example code
snippet about how a particular technology should work.
Given developers’ time constraints and economic pressure,
having ready-to-use and good functional code snippets is

a welcome time-saver. As many recent studies show, this
sentiment is common among developers and contributes
heavily to Stack Overflow’s unabated popularity [1]—[7].

Code on Stack Overflow is constantly evolving. The
developer community continuously adds new snippets and
maintains existing ones [lf], sometimes addressing bugs
and vulnerabilities. When app developers reuse code snip-
pets from Stack Overflow, they effectively create a depen-
dency on those code snippets. Thus, when a newer version
of a reused snippet on Stack Overflow includes security
and/or bug fixes, developers’ negligence in updating their
reused version renders their code unnecessarily vulnerable
or buggy. Ultimately, this means that code on Stack Over-
flow needs to be treated like any other code dependency
managed with some version control. However, past work by
Manes and Baysal [8]] has shown that code on GitHub, which
attributes its origin to Stack Overflow, and the original code
snippet on Stack Overflow evolve independently from each
other. This suggests that developers do not track changes
to reused Stack Overflow code. Hong et al. [9] investigated
the change histories of Stack Overflow snippets to identify
insecure code snippets. They found the first evidence that
outdated, vulnerable snippets can be found in the current
code bases of open-source C/C++ projects. Zhang et al. [[10]]
detected vulnerable C/C++ snippets on Stack Overflow and
found that snippet revisions are associated with reducing the
number of code weaknesses.

These observations set the stage for our work. We are
interested in a more comprehensive picture of the effects
of Stack Overflow code snippet evolution on open-source
software security, and we explore the following research
questions: RQ1: Do Stack Overflow code artifacts reused in
developer code bases evolve on Stack Overflow? RQ2: Can
we find evidence that developers monitor Stack Overflow for
code updates? RQ3: Do developers miss security fixes on
Stack Overflow for code also present in their code bases?

To answer our research questions, we take inspiration
from prior works, but we devise in this paper a methodol-
ogy that addresses the shortcomings of those works. First,
attributing Stack Overflow snippets when copying them to
developer code bases is the exception and not the norm [11]].
Thus, limiting the dataset to snippets of attributed posts pro-
vides only an incomplete, biased picture. Second, automati-
cally classifying code snippets as vulnerable is an unsolved
problem when not scoped to a narrow problem domain (e.g.,

crypto APIs [6]) and even state-of-the-art work [9] relies
on heuristics and idiosyncrasies of a single programming
language. Thus, the strategy to identify vulnerable snippets
on a large scale and re-identify them in developer code
bases is inherently limited by the classification tool (e.g.,
supported languages or accuracy). In our approach, we first
used clone detection to identify all the versions of 1.5M code
snippets from Stack Overflow (in total, 3.5M code snippet
versions) in the code bases of 11,479 popular open-source
projects on GitHub without limiting our dataset to only
attributed snippets. We focused on code snippets in the most
popular programming languages Python, Java, JavaScript,
and C. From that, by comparing the change history of
Stack Overflow snippets with the latest version of code on
GitHub, we retrieve the set of code snippets that evolved
on Stack Overflow since appearing in developer code bases,
and that is hence outdated in the GitHub projects (RQI).
Additionally, applying clone detection to the entire change
history of the GitHub code bases and that of Stack Overflow
posts allows us to detect whether developers updated their
code to a newer version of the Stack Overflow snippet,
answering RQ2. Lastly, for RQ3, we used a combined
method of natural language processing of commit messages
and comments, analyzing code properties, and manual con-
firmation to determine which evolved code snippets on Stack
Overflow contain security-relevant edits that have not been
transferred to the code bases on GitHub.

We found that 2,405 code snippet versions reused in
22,735 distinct GitHub source files were outdated, affecting
2,109 GitHub projects. Among those outdated snippet ver-
sions, we manually verified 26 to have a security-relevant
update on Stack Overflow that fixes a known vulnerability.
The fixes to those vulnerabilities on Stack Overflow were
not reflected in 43 highly popular, non-forked open-source
projects to whose maintainers we disclosed our findings.
Further analyzing the 43 affected projects reveals that it
took, on average, 1,060£506 days (max. 3,303 days) from
when an insecure Stack Overflow code snippet is committed
to a GitHub project until the time a Stack Overflow comment
raising a security warning is made. However, as soon as a
security warning is raised, it takes, on average, 296200
days (max. 1,516) for a security issue in a code snippet to
be fixed. For a time difference this long, it would be non-
trivial for developers to manually track Stack Overflow for
updates or be aware of (or react to) security discussions
around a piece of code they reused such a long time ago.

While prior work [12], [13] made crucial contributions
in providing tools to help developers reuse Stack Overflow
code snippets more securely, those works treated code on
Stack Overflow as static and thus only helped to mitigate
current instances of insecure code reuse. For instance, avail-
able tools can flag a code snippet as secure. However, as our
results show, the developer community on Stack Overflow
can raise a security warning about such a snippet months
or even years later. And developers that reused the insecure
version suddenly depend on an insecure code snippet. To
our knowledge, no tool currently exists that tackles this
problem of completely bridging the Stack Overflow and

If you have a java.io.InputStream object, how should you process that object and produce a 0
String ?

3953

Suppose | have an InputStream that contains text data, and | want to convertittoa String, soo
for example | can write that to a log file

What is the easiest way to take the InputStream and convertittoa String ? 6

public String convertStreamToString(InputStream is) { e

}
java sting o stream inputstream }Tags

edited Jan 519 at 10:28 asked Nov 2108 at 16:47

shareable URL M 40.3k 8 o1
last revision date

Figure 1: Question post that has 3,953 votes (score) and
contains three text blocks (@)) and one code block (@).

GitHub knowledge ecosystems. Our findings show that code
on Stack Overflow is “evolving code.” This observation
calls for a different approach to building tools to tackle
the problem of insecure code reuse from Stack Overflow.
In addition to warnings during copy-pasting, tools should
constantly monitor Stack Overflow for security warnings
or code fixes and notify developers to reduce the amount
of outdated insecure Stack Overflow snippets reused in
production code.

2. A Primer of Stack Overflow

A discussion thread (short: thread) on Stack Overflow
usually consists of one or more posts. The first post in a
thread is the question; all other posts are answers. Moreover,
each post consists of text blocks and code snippets. A
text block contains text written in a natural language and
provides additional context for readers of a post. A code
snippet contains a chunk of code written in a programming
language. Figure T|depicts a question post that contains three
text blocks and a single code snippet.

A unique PostId identifies every Stack Overflow post.
Using the Postld, it is possible to reference a specific post
directly and to share direct access to it via URL. Some
developers copy code snippets from a post and include
the URL of the post in their source code files to make
its Stack Overflow origin explicit. This way of referencing
Stack Overflow posts in developer code bases—a behavior
in line with the Stack Overflow license—is what we refer
to as attribution. In addition, Stack Overflow provides a
commenting feature for posts, which can give feedback on
whether a code snippet in a post works, whether it contains
a bug, a vulnerability, or another idea for a solution.

Version Control of Stack Overflow Artifacts: In
general, posts on Stack Overflow are not static content
but strongly influenced by the community’s reaction (e.g.,
through comments or up/down votes), which in turn can
motivate the creator of a post, or the developer community,
to edit and expand the content of posts. For the creation of
every post as well as for every post edit, Stack Overflow
creates a post version object to record all text and code
changes made, together with the date the change was made

a simpler solution based on this answer:

138 public static String prettyFormat(String input, int indent) {

try {
Source xmlInput = new StreamSource(new StringReader(input));
StringWriter stringWriter = new StringWriter();
StreamResult xmlOutput = new StreamResult(stringWriter);
TransformerFactory transformerFactory = TransformerFactory.newInstance();
transformerFactory.setAttribute("indent-number", indent);
transformerFactory.setAttribute(XMLConstants.ACCESS_EXTERNAL_DTD, "");
transformerFactory.setAttribute(XMLConstants.ACCESS_EXTERNAL_STYLESHEET, "*
Transformer transformer = transformerFactory.newTransformer();
transformer.setOutputProperty(OutputKeys.INDENT, "yes");
transformer.transform(xmlInput, xmlOutput);
return xmlOutput.getWriter().toString();

} catch (Exception e) {
throw new RuntimeException(e); // simple exception handling, please review

}

}

public static String prettyFormat(String input) {
return prettyFormat(input, 2);

Share Improve this answer Follow edited May 25, 2021 at 11:04 answered Aug 12, 2009 at 8:22

794) ® 2 1Mk

I This code snippet is vulnerable to XML eXternal Entity Injection (XXE). See: l

| ct owasp.org/cheatsheets]... - l

Figure 2: A Stack Overflow answer post with comments and
change history. The original post was created on Aug 12,
2009, and the code was edited on Feb 23, 2011. Almost
ten years later, a comment (dashed line) points out an XXE
vulnerability, which led to a code revision (see Figure E[)

and the author that made the changes. An optional commit
message by the user summarizing the changes they made is
stored alongside the post version. The post version object
is then stored in a post change history, a collection of all
the post versions. Stack Overflow provides version control
for posts by recording all the edits made to posts using
a post change history. Even though Stack Overflow has
a comprehensive version control for posts, only the latest
version of posts is displayed on the Stack Overflow website.

We briefly illustrate the versioning of Stack Overflow
posts using a concrete example from our results. Figure [2]
depicts an example answer post (id 1264912) [[14] that was
created on Aug 12, 2009. In the last comment of this answer
post (marked with a dashed line), posted almost ten years
after version #3 of the post, a developer pointed out that
the code snippet contains an XML eXternal Entities (XXE)
injection vulnerability (CWE-611) and provided a link to the
OWASP website detailing the nature of the vulnerability.
This vulnerability, if not fixed, may allow an attacker to
disclose confidential data or server-side request forgery. For
this reason, the vulnerability is listed in the OWASP top
10 web application security risks. Figure [3] shows the last
versions of the answer post. In version #4 of the answer, the
vulnerability was fixed thanks to this comment, as also noted
in the commit message of that version. In this code version,
the changes include the fix recommended in the OWASP
website by protecting the TransformerFactory Java
object. In our results, we found the vulnerable version
#3 of that code snippet in the current code base of the
Apache Chemistry project and the popular Apache Lucene-

missing s in the class name. Correct Class name is XMLConstants. Without $ﬁg§pDV°Ved May 25, 2021 at
> B s the compilation will fail

Source Link 794 209026

edit approved Mar 19, 2021 at
Fix XXE ility as i in the 2214

va

Source Link

Inline | Side-by-side | Side-by-side Markdown

a simpler solution based on this answer:

952 © 5 ©16 ® 35

a simpler solution based on this answer:

public static String prettyFormat(String input public static String prettyFormat(String input
try { try {
Source xmlInput = new StreamSource(new Source xmlInput = new StreamSource(new
StringWriter stringWriter = new String StringWriter stringWriter = new String
StreamResult xmlOutput = new StreamRes StreamResult xmlOutput = new StreamRes
TransformerFactory transformerFactory TransformerFactory transformerFactory
transformerFactory.setAttribute("inden transformerFactory.setAttribute("inden
Transformer transformer = transformerF transformerFactory.setAttribute (XMLCon
transformer.setOutputProperty(OutputKe transformerFactory.setAttribute (XMLCon
transformer.transform(xmlInput, xmlOut Transformer transformer = transformerF
return xmlOutput.getWriter().toString(transformer.setOutputProperty (Outputke
} catch (Exception e) { transformer.transform(xmlInput, xmlOut
throw new RuntimeException(e); // simp return xmlOutput.getWriter().toString(
} } catch (Exception e) {
} throw new RuntimeException(e); // simp
}
public static String prettyFormat(String input }
return prettyFormat(input, 2);
public static String prettyFormat(String input
return prettyFormat(input, 2);
b

Figure 3: Fourth version of the answer post in Figure
Based on the pointed-out XXE vulnerability, the 4" version
of the post (on Mar 19, 2021) includes the corresponding
fix, as also noted in the commit message of the version.

Solr project. The vulnerable snippet was committed to the
Apache Lucene-Solr project on Jan 25, 2012, almost one
year after version #3 was created and nine years before the
vulnerability was fixed in version #4.

The evolution of artifacts on Stack Overflow is similar
to how software evolves. A program evolves when bugs or
vulnerabilities are fixed, new features are added, or code is
updated due to changes in requirements. A version control
system tracks changes to source code and other artifacts,
while a bug tracking system is used to triage and solve
bugs or issues. In this work, we transfer the concepts of bug
tracking and version control from software projects to Stack
Overflow. In the example above, the post change history
provides version control for the code snippets, and the com-
ments provide a form of loosely-coupled issue trackingﬂ

3. Related Works

We provide a brief overview of related works that studied
code on Stack Overflow or assessed the problem of outdated
third-party libraries, which carries a conceptual resemblance
to the problem of using outdated code from Stack Overflow.

3.1. Stack Overflow

Fahl et al. [4], [5] studied developers who consulted
Stack Overflow for help and found high-profile applications
vulnerable to MitM attacks because developers copy code
examples specifically disabling TLS functionality.

1. It is worth pointing out that the commenting feature is not a bug-
tracking system per se. Only comments about a buggy or insecure code
snippet are considered a bug report.

Acar et al. [3] studied which resources developers con-
sult when facing a security-related problem. To this end, they
conducted a lab study with 54 developers, providing them
with different information sources to consult while imple-
menting a security feature. They conclude that developers
that use books and official documentation are more likely
to write secure code. At the same time, those that consulted
Stack Overflow are more prone to writing insecure but more
functionally correct code.

Zhang et al. [[15] studied security API misuse patterns
and found that several Stack Overflow code examples con-
taining improper API usage were reused in open-source
projects. Verdi et al. [13] found 69 vulnerable Stack Over-
flow code snippets and usages of the vulnerable snippets in
over 2,850 projects on GitHub. The authors built a browser
extension capable of detecting known vulnerable C++ code
snippets to stop their further propagation.

Fischer et al. [6] investigated the number of insecure
code samples on Stack Overflow that resurfaced in high-
profile Android apps on Google Play. The authors used a
learning-based approach to classify code snippets into secure
or insecure, depending on the usage patterns of Java and
third-party crypto APIs. They discovered that about 30%
of the insecure code samples had been reused in security-
critical apps. In a more recent study, Fischer et al. [[12]] added
a warning to posts containing insecure code snippets to assist
developers in avoiding them. Developers can either copy the
insecure code or consult a list of recommended posts with
similar functionality but secure code.

While those works made crucial contributions in point-
ing out the problem of vulnerable code snippets on Stack
Overflow and their propagation to developers’ code bases,
none considered these code snippets as “evolving code” or
studied the impact of that evolution on software security.

Zhang et al. [10] scanned 650k C/C++ snippets from
Stack Overflow for 89 CWEs (Common Weakness Enumer-
ation) and discovered 13k vulnerable snippets. The authors
also investigated the code evolution history of C/C++ snip-
pets and found that, in general, code revisions are associated
with reducing the number of code weaknesses.

The recent Dicos paper by Hong et al. [9] is closest
to our work. Dicos detects security fixes in the change
histories of Stack Overflow posts by searching for security-
relevant keywords in natural language texts and scanning
for security-relevant changes to a snippet’s control flow
or security-sensitive APIs. Applying Dicos to 668k posts
tagged with C, C++, or Android, the authors found 12k
insecure posts. Using clone detection on 2k popular C/C++
open-source projects, the authors could further detect inse-
cure snippets in 151 projects. While Dicos’ results relate
to our RQ3, i.e., if outdated insecure snippets are found
in GitHub projects, Dicos’ implementation is limited (e.g.,
it only compares the initial and the last version in the
change history of code snippets) and not directly applicable
for our methodology (e.g., insecure snippets must contain
certain types of edits idiosyncratic to selected programming
languages). We further discuss the applicability of Dicos for
our methodology and differences in our work in

Stack Overflow and GitHub have also been the subjects
of measurement and developer behavior studies, e.g., [11],
[16]-[23]]. Closest to our approach, Manes and Baysal [8]
compared the change histories of 23k GitHub projects and
4.6k Stack Overflow code snippets that were explicitly at-
tributed. They found that reused snippets develop indepen-
dently and that Stack Overflow snippets primarily evolve
in their text blocks. The authors did not use code clone
detection to determine if attribution was accompanied by
copied code and relied entirely on time series analysis like
impact latencies. They left the application of code clone
detection open for future work. Further, Baltes et al. [I]
created the SOTorrent dataset, which we also use in our
work (see §E]) Based on this dataset, the authors showed
that code on Stack Overflow is maintained and does evolve.

3.2. Third-party Libraries

Outdated third-party libraries have been shown to have
security implications for apps that rely on them. Derr et
al. [24] found that vulnerabilities stayed longer in Android
apps because app developers were slow in updating outdated
library versions. Lauinger et al. [25] investigated the usage
of JavaScript libraries in web apps and found that web
developers do not react in time to update library versions to
the most recent bug fix release.The authors also interviewed
developers and discovered that many developers refrained
from updates due to fear of incompatibilities, lack of neces-
sity, or being unaware of updates.

By copying code from Stack Overflow, developers create
a dependency similar to including a software library. Thus,
there exist strong conceptual similarities. However, no work
has studied whether the same problems with outdated li-
braries exist for outdated code snippets. In contrast to library
detection, we face different challenges: First, we need to re-
identify very small code pieces with just a handful of lines of
code compared to complete libraries. Second, in contrast to
libraries, there are no systems like Common Vulnerabilities
and Exposures (CVE) to report vulnerable code snippets,
but instead, we have to rely on the snippets, their commit
messages, and surrounding discussions to classify snippets,
similar to Dicos [9].

4. Effects of Code Snippet Evolution

We first present our methodology (§4.1) to answer our
research questions: RQ1: Do Stack Overflow code artifacts
that are reused in developer code bases evolve on Stack
Overflow? RQ2: Can we find evidence that developers
monitor Stack Overflow for code updates and update their
projects accordingly? RQ3: If developers miss updates to
reused code snippets on Stack Overflow, do they also miss
security-relevant updates? Afterward, we present our results

and findings (§4.2).
4.1. Research Methodology

Our data-driven approach to answering our questions is
depicted in Figure 4] In general: We used clone detection

2 Secure

. I N N |] 6
GitHuo - - - | 3 AT IR == o |
<> = I . |
I N N > I .]
SOTorrent 4
I I N 4 =4- &
& %‘) % Insecure

Figure 4: Our research methodology: (1) extraction of Stack Overflow code snippets and developer code from GitHub, (2) clone
detection between Stack Overflow change histories and GitHub, (3) timeline analysis and filtering to identify best candidates for code
clone pairs, (4) identifying outdated (RQ1) and updated (RQ2) snippets by extracting code evolution on Stack Overflow and comparing
change histories between platforms, (5) filtering reused outdated Stack Overflow posts without comments and revisions without commit
messages, and (6) classifying security-relevance of Stack Overflow code edits based on comments, commit messages, code changes, and
manual confirmation for RQ3, detecting fixes to reused vulnerable code snippets which did not propagate to GitHub.

TABLE 1: Distributions of the code snippet data set from Stack Overflow showing each programming language’s initial
and final sample size. The final sample is selected by removing all single-version snippets and snippets containing at least

one version with less than 10 LoC in their change history.

Initial Final (> 1 Version N >= 10 LoC)
Versions
Language No. ¢ Score ¢ Score No. Min Max ¢ No. Median
Java 2,429,964 1.9 524,099 (21.6%) 2.7 1,209,700 2 30 2.3 2
C 404,051 1.6 112,138 (27.8%) 1.9 274,508 2 36 24 2
Python 1,580,623 2.0 336,328 (21.3%) 29 807,345 2 26 2.4 2
JavaScript 2,704,287 1.8 530,205 (19.6%) 2.9 1,227,326 2 743 2.3 2
Overall 7,118,925 1.9 1,502,770 (21.1%) 2.8 3,518,879 2.3

to find code in open-source projects that are highly similar
to code snippets on Stack Overflow. For each occurrence
of reused code, we compared the change histories of this
code between the open-source projects and Stack Overflow.
From this comparison, we identified instances of outdated
Stack Overflow code snippets within open-source projects.
In a final step, we analyzed the change history of the reused,
outdated code snippets for security issues and correspond-
ing fixes by mining bug-fix commit messages and using
information from the discussions on Stack Overflow around
corresponding posts, and then mapped those results to the
open-source projects containing affected code snippets.

Overall, we carried out this analysis process for four
different programming languages: Java and C, since they
are the focus of the majority of prior security-related studies
on Stack Overflow [3], [6], [9, [O, [[L1]-[13], [26], and
Python and JavaScript as they are currently the most popular
languages on Stack Overflow [27]. We now describe the
used data sets and the individual steps from Figure [4]

4.1.1. Study data sets. We used two main data sources
for our study—SOTorrent [1]] and GitHub—which are also
commonly used in related works.

Stack Overflow code snippets: Our data set of Stack
Overflow code snippets is based on the December 31, 2020
release of the SOTorrent data set [|1]]. This data set stores the
entire change history of all text and code on Stack Overflow,
which provides the necessary version control that we need
to track and analyze changes to individual code snippets.
We will refer to a smnippet change history when we mean
the entirety of all versions of a code snippet.

Since SOTorrent does not contain information about the

used programming language, we used Guesslang [28] to
determine the programming language for the most recent
versions of all code snippets with at least 5 LoC. Out
of 31,287,646 code snippets in the data set, Guesslang
identified the language of 31,202,349 code snippets. No
assignment was possible for the remaining 85,297 code
snippets, mainly because the code snippets do not contain
actual code. Our data set contains code snippets in 30
different programming languages.

A close examination of this data set showed that in line
with prior work [16] many short code snippets consisted
of highly trivial code, such as boilerplate code. Given that
the first step in our study is to match Stack Overflow code
snippets with code from open-source projects using clone
detection, this would lead to a very high number of positive
matches from whose analysis no meaningful information
could be drawn. To reflect this fact, we limited our data
set to only those snippets where each version in the change
history consists of at least 10 LoC. Further, since our study
focuses on code evolution, we excluded all code snippets
that have never undergone any changes since their creation.
We considered all code snippets that meet these criteria for
clone detection and disregarded any other factors, such as
post popularity, post views, or the reputation of users.

Table [T] provides an overview of the corresponding sam-
ple sizes for the four considered programming languages.
We considered 1.5M code snippets, where most are written
in Java (524k; 34.9% of final sample size) or JavaScript
(530k; 35.3%). Those snippets have 3.5M versions, whereas
the average snippet in our final data set has 2.3 versions. The
average post in our initial data set had a score of 1.9, and
the average post in our final sample had a score of 2.8,

indicating that posts with revisions have higher scores.

Open source projects: We used GitHub for our data
set of open-source projects, as it is one of the most popular
code hosting platforms in open-source communities [29].
Code on GitHub is version controlled using the Git version
control system, allowing us to measure historical code over-
lap between Stack Overflow and GitHub. For our sample,
we focused on popular and well-maintained projects, as
we consider the overall impact of missed security-critical
updates to be the highest and because we assume that the
code base is steadily maintained over a longer period.

Using the GitHub Search API, we retrieved a list of
projects sorted by popularity (number of stars) for each of
the four programming languages considered in this study.
We then manually inspected each project in this initial
candidate list and excluded: a) forks to avoid including es-
sentially identical code in the analysis; b) archived (retired)
projects as it is not reasonable to expect the maintainers
to provide a bug fix in case they are notified; and c)
projects that are known to be learning material{] because
the focus of our study lay on real software projects. Our
final GitHub sample consisted of 11,479 individual projects
(Java: 2,290, C: 2,241, Python: 3,107, JavaScript: 3,841)
containing 4,098,397 source files.

4.1.2. Clone detection. To identify shared code between
our GitHub and Stack Overflow samples, we used clone de-
tection to search for complete or partial matches between all
of the source files in the current versions of the open-source
projects and the complete change histories of code snippets
from Stack Overflow. As a first step, we only considered
the most recent version of the open-source projects since we
were interested in projects that currently have a dependency
on Stack Overflow code snippets. The result is a list of all
the source files code with Stack Overflow in common. In a
second step, we then rerun the clone detection for the files
in this list, but this time for all previous versions stored in
the Git version history of a project—this is a cartesian-
product clone detection between the change histories of
GitHub projects and their Stack Overflow dependenciesﬂ
To account for the differences in programming lan-
guages, we used two different clone detection tools to
identify common code: NiCad [30] for Java and C, and PMD
Copy-Paste Detector [31]] for Python and JavaScript. Both
tools have been fine-tuned with parameters specific to Stack
Overflow code snippets to achieve the best possible results.
For PMD CPD, we adopted the fine-tuned parameters from
Baltes et al. [|[11]], which were already optimized for usage
with Stack Overflow code. For NiCad, we fine-tuned the
parameters ourselves (see Appendix [A). It is important
to note that PMD CPD can only recognize exact copies
of Python and JavaScript code and only returns exactly

2. Examples of such projects: https://github.com/topics/awesome

3. A cartesian-product clone detection between all versions of all Stack
Overflow code snippets and the entire change history of all source files
in our GitHub projects sample was not feasible. Already our step-wise
approach took around 17 weeks using four servers (each with 64-core Intel
Xeon E7-8867 and 1.5 TB Ram).

matching sections in source files. NiCad also recognizes
slightly modified copies and returns a similarity score be-
tween GitHub file sections and code snippets when this score
exceeds 83% (the cutoff is based on our calibration process).
We identified 108,134 file sections in 3,439 GitHub
projects where code common with multiple snippet versions
from Stack Overflow were found. A section of a GitHub
file is defined by the triple 1) start and 2) end line in 3) a
specific commit. For most file sections, we found several
Stack Overflow code snippet versions with (nearly) identical
code, which aligns with findings of prior work [22] on
code duplication on Stack Overflow. On average, for every
single Python source file section, we found the same code
in 4.81 code snippets (max. 68 snippets), for Java in 3.19
snippets (max. 67), for C in 1.33 snippets (max. 26), and
for JavaScript in 2.97 snippets (max. 46). We found 8,538
distinct reused code snippets with together 16,479 versions
(from 8,436 distinct posts), where the average file section
had 3.22 snippets (and 6.55 versions) as matching clones.

4.1.3. Identifying best candidates. Not all of the ~16k
snippet versions from the 8.5k snippets are relevant to our
research questions. Since we are interested in measuring the
impact of reused outdated snippets from Stack Overflow
on the security of open-source GitHub projects, we can
filter snippets that do not fit this setting. To this end, we
implemented a filter pipeline that gradually reduced the
number of candidate snippet versions per GitHub file section
in our clone detection results. Table [2] details the filtering
process for the clones to our initial 108,134 distinct file
sections. The input to each filter step is reported as a
count of distinct posts, snippets, and snippet versions. The
average posts/snippets/versions per file section provide an
overview of the /:n mapping between a single file section
and detected clones on Stack Overflow. In cases where this
relation becomes 1:0, the file section is removed. In the
following, we describe the individual filter steps.

First, we apply filters that are motivated by prior studies
on the behavior of developers using Stack Overflow:
F1. Attributions Filter: Baltes et al. [[11] have shown
that some developers copy code from Stack Overflow and
attribute the Stack Overflow source, a behavior in line with
the Stack Overflow license. Accordingly, this filter relies on
attribution as the strongest indication of code copy from
specific Stack Overflow posts. If a section of a file or its
immediate surrounding context includes attribution to a post
on Stack Overflow, this filter excludes all snippets that do
not originate from the corresponding post. In cases where a
specific answer or question is not referenced (i.e., a Stack
Overflow thread is attributed), all but the snippets belonging
to the question and all answers in the thread are excluded.
F2. Commit Date Filter: Prior works [4]], [6] have shown
that developers seemingly copy code from Stack Overflow
to their projects, and we apply this same assumption for the
reduction of our data set. A logical prerequisite for a causal
link between a Stack Overflow post and a GitHub source
file is that the post existed before the code was committed
on GitHub. Accordingly, this filter compares the change

https://github.com/topics/awesome

TABLE 2: The number of distinct posts, code snippets, and snippet versions for each filter step, the average no. of posts,
snippets, and snippets version for each distinct detected GitHub file section, as well as the fotal count of posts, snippets,

and versions removed by each filter.

Input to filter (Distinct)

Average per GitHub file section Removed by filter (Total)

Filter File sections Posts Snippets Versions ¢ Posts ¢ Snippets ¢ Versions Posts Snippets Versions
T T

: omml .af _ > > > ? b : . 3,535 3,576 7,076
F3: Version Similarity 84,542 6,407 6,475 12,294 2.8375 2.8406 5.2595 0 0 5.673
F4: Snippet Similarity 84,542 6,407 6,475 7,086 2.8375 2.8406 2.8406 665 671 ’ 68%
F5: Post Type 84,542 6,054 6,117 6,712 2.8176 2.8206 2.8206 1151 1155 | 196
F6: Post Popularity 84,542 5,237 5,296 5,850 1.6471 1.6500 1.6500 1’295 1’301 1’349
F7: Latest Post 84,542 4,336 4,389 4,330 1.0379 1.0405 1.0405 162 162 163
Final 84,542 4,241 4,272 4,755 1.0000 1.0000 1.0000 - - -

histories of the code snippets on Stack Overflow and the file
sections on GitHub. It excludes all snippets created after the
commit that introduces a snippet into a source file.

The number of clone Stack Overflow candidates per
GitHub file section after F2 still poses a severe challenge
for the next steps in our analyses to determine the secu-
rity impact of reused code. Ideally, we could classify all
remaining ~12k reused Stack Overflow snippets in our
data set as security-relevant or not. However, during the
project, it became evident that this type of analysis can
only be partially automated with current tools and still
requires much manual verification work. Although there are
already promising approaches [6], [9]], [12] for automating
this task, these approaches have proven to be too limited in
scope (e.g., works only with one programming language or
a narrow aspect of security) or unsuitable for our current
situation (see §4.1.5] for details). For this reason, we added
additional filtering steps to reduce the number of matches
between GitHub file sections and Stack Overflow snippet
versions to a feasible amount for manual analysis.

The additional filters follow the basic idea that if a de-
veloper has reused code from Stack Overflow, it is rather un-
likely that they have taken code from several different Stack
Overflow snippets or different versions of them. Hence,
this approach requires making several assumptions about
how developers use Stack Overflow and comes with the
limitation that the mapping may be subject to error. Despite
these limitations, we believe this approach is currently the
only practical solution allowing us to perform subsequent
analyses of security relevance. When creating the additional
steps of the filter pipeline, we oriented ourselves to first go
through steps that leave the least room for interpretation.

In the next steps, we prioritized clones with higher
similarity over those with lower similarity. The intuition is
that the less similar the Stack Overflow snippets and GitHub
code are, the less likely they are directly related. As PMD
CPD only returns exactly matching sections and snippets,
these filters are ineffective for Python and JavaScript.

F3. Version Similarity Filter: If multiple versions of the
same snippet are found in a file section, this filter excludes
all versions except for the one(s) with the highest similarity.

If multiple versions have an equally high similarity score,
the filter selects the latest version, ensuring the most con-
servative result in our later analysis.

F4. Snippet Similarity Filter: This filter compares the sim-
ilarity scores of the snippets for each file section, excluding
all except the one(s) with the highest scores.

Lastly, if the above filters did not yield the best candidate
version, we added filters considering developers’ most likely
behavior while using Stack Overflow.

F5. Post Type Filter: Following Baltes et al. [11], devel-
opers are more likely to reuse code from answer posts than
question posts. Accordingly, if a file section contains clones
of snippets from answers, this filter excludes all snippet
clones from question posts from further consideration.

F6. Post Popularity Filter: This filter results directly from
the nature of the Stack Overflow website. By default, Stack
Overflow users are shown answers within posts sorted ac-
cording to their score, which is a measurement of usefulness
by other members of the Stack Overflow community. In line
with other review systems (e.g., app stores and online mar-
kets), we assume developers will use this community-driven
feedback when selecting information for their current pro-
gramming task. Accordingly, we filter code snippets based
on the popularity of their respective posts and select the code
snippets belonging to the most popular post. However, a post
might be popular for various reasons that cannot be easily
determined automatically. To better consider the relevance
of a post for a detected clone, this filter first computes the
lines of code (LoC) of all the code snippets reported as
clones and the file section containing the reported clones. If
code snippets have the same LoC as the GitHub file section,
the filter selects only the posts of those code snippets for
comparing popularity. This means we assume at this point
that developers rather copy entire code snippets than cherry-
pick parts of them. If no such snippet exists, the filter selects
the most popular one(s) from all posts.

F7. Latest Post Filter: This is the final filter in the pipeline,
and at this point, all the remaining clones belong to the same
post type (question or answer) and are equally popular. If the
remaining clones belong to question posts, this filter selects
the snippet belonging to the newest post. Otherwise, if the

https://stackoverflow.com/a/9293885
Type: Answer post
VisualDevelopmentUtil.java:38-50

G Ene i ¢ 355 e e Rl

(dst);

GRS a0 w16 {ten = tn.read(but)) > 8) ¢

2 (buf, 6,
) 0;

{0H }
Version: 1
Date: Feb 15,2012 at 12:59
Similarity: 90%

Commit: eeae728
Date: Aug 21, 2018

(a) File section on GitHub

(b) Stack Overflow post 9293885

https://stackoverflow.com/a/19542599
Type: Answer post

28

Version: 1
Date: Oct 23, 2013 at 13:08
Similarity: 90%

Version: 2
Date: Oct 23, 2013 at 14:18
Similarity: 90%

(c) Stack Overflow post 19542599

Figure 5: Example for the execution of the filter pipeline. Filter Version Similarity (F3) removes version 1 of post 19542599.
Filter Post Popularity (F6) selects revision 1 of post 9293885 as the final code snippet.

clones belong to answer posts and there is a single accepted
answer, the code snippet in the accepted answer is selected.
If there is more than one accepted answer, the code snippet
belonging to the newest accepted answer is selected.

Example: To illustrate our filter pipeline, we go
through the procedure for a concrete example using
Figure [5] Figure [5a] shows a code section from the
Apache NetBeans project on GitHub—Ilines 38-50 of
VisualDevelopmentUtil.java source file. Figures [5b|
and [5c| show one, respectively, two matching Stack Overflow
code snippet versions from two different answer posts. For
the snippet in Figure the clone detector found two dif-
ferent versions (version 1 and 2) that match the file section
in Figure [5a] Our filter pipeline sequentially determines the
best candidate version among those three candidates as fol-
lows: The attributions filter (F1) will not discard any clones
because the GitHub source file contains no attributions to
Stack Overflow. Commit eeae728 introduced the reused
code on Aug 21, 2018, after any of the three snippets were
posted (2012 and 2013, respectively). Thus, the commit date
filter (F2) does not remove any candidates either. Next, the
two versions of the snippet in Figure have an equal
similarity of 90% with the file section. Hence, the version
similarity filter (F3) will select version 2, since it is the
newest one, and discard version 1, reducing the overall set
of candidates to two versions from two code snippets. Since
those two versions have the same similarity of 90%, the
snippet similarity filter (F4) cannot reduce the candidate set
further. Similarly, both code snippets are in answer posts—
post 9293885 [32] and 19542599 [33|]|—consequently, the
post type filter (F5) will not remove any snippet. Next, the
post popularity filter (F6) filter first determines that both
snippets have the same LoC (12) as the file section and,
thus, selects the more popular snippet, which is the snippet
in Figure [5b] with a score of 355 in contrast to the other
snippet with a score of 28. Since this filter already reduced
the candidate set to one, the latest post filter (F7) had no
effect. As a result, we consider only the post and code
snippet in Figure [5b]in the further analysis steps.

Final data set: As depicted in Table[2] after the filtering
pipeline, we ended up with 4,755 distinct snippet versions
from 4,272 snippets (JavaScript: 1,979; Java: 909; Python:
1,112; C: 272) from 4,241 posts that were reused in 84,542
distinct file sections in 2,824 GitHub projects. Thus, we

identified reused Stack Overflow code snippets in almost
25% of all 11,479 investigated GitHub projects. Based on
this final data set, we answer our research questions.

Filter pipeline evaluation: To understand whether the
filter pipeline approximates developer behavior, we evalu-
ated it using a ground truth dataset comprising code snippets
copied from SO to GH. Since it is not trivial to determine the
exact source a piece of code is copied from (see §5.2), we
relied on attribution since it is the strongest indicator of code
reuse from SO [8], [11]], [13]. We collected all source files
from our data set of detected clones containing an attribution
to answer posts since developers copy code from attributed
answers [11]. Overall, 292 source files attribute 37 distinct
answer posts. Those source files contain 315 file sections
for which we detected code clones in 219 distinct posts
(JavaScript: 97; Java: 79; Python: 41; C: 2). Thus, 182 posts
were also reported as clones but were not attributed. This
enables us to determine whether, for each of the 315 file
sections, the filter pipeline without the Attributions Filter
(F1) filter will select clones from the 37 attributed posts or
the 182 unattributed posts.

The filter pipeline with only filters F2 through F7 se-
lected the code snippets from the attributed posts in 304
(96.5%) cases. Only in 11 cases did the filters not select code
snippet clones from the attributed posts. In 9 of these 11
cases, source files contained attributions to several SO posts.
This may indicate that the filter pipeline makes the wrong
judgment in cases where a source file attributes multiple
SO posts in direct proximity to reused code snippets. These
results show that the filter pipeline reflects the behavior of
developers reusing code from SO.

4.1.4. Determining Outdatedness. Using our filtered data
set, we answer RQ1 and RQ2. To determine whether a clone
of a snippet version is outdated or not, we check whether the
reused version on GitHub is the latest version of the snippet
on Stack Overflow. If the reused version is not the latest,
the snippet evolved on Stack Overflow, rendering the reused
GitHub version outdated. Otherwise, the copied version is
up-to-date. Answering RQ2 requires tracing the evolution
of copied Stack Overflow snippet versions in GitHub source
files. To determine whether an update to a snippet on Stack
Overflow also transferred to the reused code snippet on
GitHub, we look backward at the change histories of GitHub

savasciot. I 10, 607 (23.9%)

Java 9, 097 (20.5%)
Python 8,987 (20.2%)
c I 3, 200 (7.2%)
0 2000 4,000 6000 8000 10,000

Relevant commits

Figure 6: Distribution of potential security-relevant commit
messages for different languages based on keyword-search.

files and Stack Overflow code snippets. We leverage the
result of our cartesian-product clone detection to detect
whether an older version of the snippet in a GitHub file
matches an older version of the Stack Overflow snippet,
indicating that the GitHub project developer became aware
of the change on Stack Overflow (e.g., by monitoring the
post, potentially proposing the edit on Stack Overflow or
other channels like independent code origins).

4.1.5. Finding Security Fixes. To answer RQ3 as to
whether developers miss security-relevant updates on Stack
Overflow for reused outdated code, we needed to find a
way to filter out the large fraction of inconsequential code
changes on Stack Overflow [34] and to determine whether
an update to a code snippet version fixes a security issue.
However, determining whether a code edit fixes a security
issue is a non-trivial task, especially for incomplete/not self-
contained code snippets as found on Stack Overflow. To the
best of our knowledge, there are no generic, automated tools
capable of determining whether or not a code update fixes
a security issue. Prior studies on Stack Overflow with the
need to classify the security of code snippets are either too
narrowly focused [3]], [6]], [26]—for example, only misuse of
Java crypto APIs—or work only with specific programming
languages [6]], [12], [13], [26].

The closest to a generic solution for classifying the
change histories of Stack Overflow snippets is Dicos [9]
(see also §3). Using keyword search in comments as well
as changes in code snippets, Dicos detects security-relevant
changes to snippets. Unfortunately, Dicos’ implementation
has limitations that prohibit an application in our study.
First, it only considers the changes between the first and
the last version but not between intermediate versions, i.e.,
pinpointing the exact Stack Overflow code snippet versions
that are vulnerable and bug-fixed. This prohibits the detec-
tion of outdated-but-secure snippets in GitHub files (RQ3)
and prevents the detection of bug fixing in GitHub projects
(RQ2). Second, Dicos’ classification requires certain code
edits—changes to control flow and security-relevant APIs—
which are tailored to the idiosyncracies of C/C++ and further
narrow the scope of detection.

Thus, without an automated, suitable classifier for code
snippets, we used keyword search in comments (inspired by
Dicos) and mining commit messages to find bug-fix com-
mits. The software engineering community has extensively
studied the mining of commit messages to find bug fixes. We
leveraged the approaches by Pan et al. [35] and by Osman
et al. [36] to find potential bug fixes in Stack Overflow

code edits. Figure[6| provides a quick overview of potentially
security-relevant commit messages in all commit messages
in SOTorrent based on the keywords from those prior works.
Since comments and commit messages are natural lan-
guage texts, a possible approach could be to build an NLP
classifier capable of determining whether or not a given
sentence raises a bug report or indicates a security fix.
However, the only data set of labeled code snippets is by
Fischer et al. [|6] and is limited to crypto API misuse in Java
code. A first experiment based on this data set showed that
the resulting detection of generic security-relevant text with
a classifier trained on this data set performed poorly. Thus,
we decided to apply approaches that use keyword search
and manually verify security-relevant comments, commit
messages, and code edits—which forms a data set for future
research on the security of Stack Overflow snippets.

4.1.6. Manual Verification of Security-relevant Edits.
The final step of our methodology is verifying whether
comments, commit messages, and code snippet edits are
security-relevant. Two researchers went through the list of
all potential security-relevant changes and manually classi-
fied them according to the following three categories:
Security-relevant: A fix in a snippet is security-relevant if
the issue fixed has a known weakness to which a Common
Weakness Enumeration (CWE) [37] identifier is assigned.
The assignment to CWEs is based on a combination of the
surrounding context (comments and commit messages) and
the diff in the post version that fixed the issue.

Bug Fixes: Fixes in this category are general software bugs
with no CWE identifiers assigned and, hence, no direct
security implication. Undefined Behaviour is one of the
software bugs in this category. These are specific errors that
produce unexpected results in an application (e.g., missing
null checks or incorrect arithmetic calculations).
Improvements: Fixes in this category concern edits to
reused code snippets that are not in the above categories.
Examples include performance improvements, adding new
language features, or removing deprecated APIs.

Based on this classification, we answer our RQ3
whether an open-source contributor missed a security-
relevant change on Stack Overflow since the time a reused
code snippet was introduced in the open-source project.

4.2. Results and Findings

4.2.1. Projects missing updates on Stack Overflow
(RQ1). Table 3| summarizes the file sections containing out-
dated versions of Stack Overflow code snippets. Overall, we
found that 2,405 snippet versions (51% out of 4,755 reused
ones) from 2,305 snippets were outdated, and we found them
in 38,623 (46% out of 84,542) file sections on GitHub.
Those outdated snippets come from 2,290 distinct Stack
Overflow posts and are reused in 22,735 distinct source files
from 2,109 distinct GitHub projects. In other words, almost
every fifth (2,109 out of 11,479) project in our data set
contains outdated code from Stack Overflow. Considering

TABLE 3: Summary of distinct projects and file sections
containing outdated code snippets reused from Stack Over-
flow, grouped by programming language.

Outdated Affected File Affected

Versions Sections Projects
C 155 (53%) 894 195 (70%)
Java 417 (44%) 1,380 426 (62%)
Python 628 (51%) 6,938 549 (74%)
JavaScript 1,205 (53%) 29,411 939 (84%)
Total 2,405 (51%) 38,623 (46%) 2,109 (75%)

only the 2,824 projects with reused code, almost 75% of
them contained at least one outdated snippet.

The average affected project had 11.01+5.83 source
files with outdated snippets, where JavaScript projects
have the highest average number of affected source files
(19.13+£12.96), and Java projects the lowest number on
average (2.6940.65). Comparing the number of distinct
outdated snippet versions (2,405) and affected files (22,735)
shows that snippets commonly appear in multiple places in
affected projects. The average outdated code snippet version
in our data set has been reused in 12.1447.64 distinct source
files. Snippet 184588891 is the most reused snippet in our
data set and was reused in 7,088 distinct source files (and
9,592 times in total). Comparing the number of distinct posts
where those outdated snippets have been posted with the
number of distinct snippets shows that 15 snippets appeared
in the same post as another snippet and that 14 posts
contained multiple outdated reused snippets. We provide
further results in Appendix

4.2.2. Detecting code snippet updates (RQ2). After exam-
ining the cartesian-product clone detection between change
histories of GitHub files and Stack Overflow snippets that
were reused in those files, we did not find any evidence
for updates in any of the projects, i.e., the reused snippet
versions were constant in the source file since the origin
commit in which the snippet was introduced.

We found every second reused snippet to be outdated,
with no differences between snippets from different
languages. This affected every fifth popular open-
source project at least once. Further, we did not find
any indication that GitHub developers transferred up-
dates to reused Stack Overflow code from Stack Over-
flow to their code bases. Thus, code snippets seem to
be at most up-to-date until a code snippet evolved and
never again afterward. This indicates that developers
do not track snippets copied from Stack Overflow for
changes or are unaware that the code they reused is
being discussed and updated/fixed on Stack Overflow.

4.2.3. Security updates on Stack Overflow (RQ3). Using
our keyword search approach, we found that 505 posts
(22% out of the 2,290 posts linked to the outdated GitHub
projects) contain potential security-relevant discussions or
code fixes. Together, these posts comprise 278 answers and

10

227 questions. By manually validating each of the 227 ques-
tion posts, we discovered that only a single question post
contains a fix to an insecure code. This fix did not propagate
to the AppScale GTS project, to which the insecure version
of the snippet was copied. For the 278 answers, we found
25 containing genuine security/bug fixes. The remaining
question and answer posts were either not security-relevant
or developers copied the patched snippet version.

We found 26 posts containing fixes to 15 distinct security
issues missing in 43 (2% out of 2,109) distinct GitHub
projects. Table [] lists the types of issues that we found,
grouped according to their vulnerability category and ref-
erenced by their CWE identifiers. Since a project might
be affected by multiple vulnerability types and posts might
contain multiple vulnerabilities, we also report the count
of distinct posts and projects. General bug fixes (no CWE
assigned) affected 15 distinct projects, while 38 distinct
projects copied snippets with weaknesses that have security
ramifications. We found multiple vulnerability types in three
projects, ngrok-libev (3), hashkill (3), and Mirai-Source-
Code (2), and we found one answer post (id 779960) that
contained three vulnerabilities (CWE-754/-835/-20).

The most severe vulnerabilities—-according to
OWASP—-that we found are XML eXternal Entities
injection (CWE-611), Buffer Overflow (CWE-120), and
Improper Input Validation (CWE-20) vulnerabilities. The
most reused, outdated, insecure code snippet is from answer
post 122721 [38]], which suffers from an Incorrect Type
Conversion (704) issue (see Figure [7). The code snippet
containing the issue was posted in version #1 of the answer
on Sep 23, 2008, and was reused in 4 open-source projects.
Eight years later, a developer pointed out in the comments
on Sep 18, 2016, that the code snippet will invoke undefined
behavior if the necessary cast is not added to the i sspace
library function. The issue was subsequently fixed 20
days later. However, this fix did not propagate to the four
open-source projects that reused the insecure version. We
provide further examples in Appendix

Table [I0] in Appendix [E] shows the 43 affected
GitHub projects, which were “watched” on average 157.4
times (max. 1,494), received an average of 4,089.63 stars
(max. 70,614), and were forked on average 1,085.4 times
(max. 16,121). Considering this high number of forks, the
vulnerabilities and bugs we found might have propagated
on GitHub, and the 43 projects affected are likely a lower
bound. Besides missing security fixes, we found another
20 posts containing fixes to improvements that were not
reflected in 26 GitHub projects (see Appendix [D).

Though the number of posts we verified as true pos-
itives to contain a security weakness is low, we re-
identified those snippets in a noticeable number of
highly popular open-source projects with thousands
of forks and stars. Given that we only studied non-
forked projects, this popularity can amplify the impact
of weaknesses in origin repositories.

Incident timelines: Based on the projects with missing

TABLE 4: Distinct security/bug issues found in Stack Over-
flow snippets, whose fixes on Stack Overflow are not re-
flected in 43 distinct GitHub projects that contained vulner-
able versions of code snippets from Stack Overflow

CWE | Lang. | #Posts | #Count | #Projects

Security-relevant Weaknesses

120 Buffer Overflow C 1 1 1
172 Encoding Error Python 1 1 1
754 Improper Check for Unusual Pyt(l;on i é é
or Exceptional Conditions IS 1 2 1
20 Improper Input validation C 2 2 2
404 Improper release of resource | Java 3 6 6
704 Incorrect Type Conversion or| C 2 5 5
Cast
835 Infinite Loop C 1 2 2
1339 Insufficient Precision IS 2 4 3
- Java 1 1 1
772 Missing release of resource Python 1 1 1
690 Unchecked Return Value to| JS 1 2 2
NULL Pointer Dereference
475 Undefined Behavior for Input| Java 1 2 2
to API
194 Unexpected Sign Extension C 1 1 1
611 XML eXternal Entity (XXE)| Java 1
Injection
General Bugfixes
Python 2 2 2
Undefined behaviour Java 1 2 2
IS 1 1 1
Java 2 2 2
S Python 1 9 8
Total (Distinct) [[28 26) 51 [48 (43)

security fixes, we attempt to understand potential developer
behavior better. We base this analysis on the order of events
when reusing code from Stack Overflow in GitHub projects
and the intervals between those events. Figure [8| depicts
the possible timeline of events when a developer commits
a clone of an insecure code snippet to a GitHub project
after it was posted on Stack Overflow (¢,steq). The commit
can happen either before a security-relevant comment is
made in the Stack Overflow post (¢cione_pefore) OF afterward
(t clone_after)- As a consequence of this comment (£ comment)s
the code snippet is revised to fix the issue (frevision). We
constructed this timeline for all open-source projects missing
security fixes. If multiple comments raise the same issue, we
select the earliest comment to understand whether (or not)
an indication of a security issue with the code snippet was
present when the snippet was reused.

For 12 of the 26 posts with fixes, the security issue was
only raised in the commit message of the revision. For the
remaining 14 posts, the issues were raised in the comments,
and we consider only those 14 posts at this point. Of those
14 posts, 15 distinct snippet versions were reused in 25
source files of 24 GitHub projects. We analyzed the timeline
of 29 incidents where vulnerable code with a CWE was
reused and a security-relevant comment was posted.

Table[5]summarizes our analysis results. The reused code
was committed in 17 of the 25 cases before the first security-

11

G CEENDIIIEDD * (unsigned char)" to avoid undefined behavior on “isspace()” edited Oct 8, 2016 at 12119
v

M4k 10 107 © 169
e | Side-by-side | Sice

If you can modify the string: If you can modify the string:

7/ Note: This function returns a pointer to a substring of the or
7/ T the given string was allocated dynamically, the caller must
/7 that pointer with the returned value, since the original point
7/ deallocated using the same allocator with which it was allocat
7/ value must NOT be deallocated using free() etc.

char *trimhitespace(char *str)

7/ Note: This function returns a pointer to a substring of the or
// If the given string was allocated dynamically, the caller must
// that pointer with the returned value, since the original point
// deallocated using the same allocator with which it was allocat
// value nust NOT be deallocated using free() etc.

char xtrimwhitespace(char str)

char end; char xend;
7/ Trim leading space
while(isspace(¥str)) stre+;

// Trim leading space
while(isspace((unsigned char)¥str)) stre+;

if(sstr == 8) // ALL spaces?
return str

if(xstr == "\0') // ALl spaces?
return str;

// Trin trailing space // Trim trailing space

end = str + strien(str) - 1; end = str + strien(str) - 1;

while(end > str & isspace(xend)) end--; while(end > str && isspace((unsigned char)xend)) end--;

/7 Wirite new null terminator

// Write new null terninator
*(end+1) ety

*(end+1) = '\

return str; return str;

You have to cast the argument for isspace to unsigned char , otherwise you invoke undefined
behavior. -

Figure 7: Answer 122721 containing a call to the isspace
library function without the necessary cast to unsigned char
(left-hand-side), which was pointed out in the comments
(bottom) and subsequently fixed 20 days later (right-hand-
side), as also noted in the commit message of the revision.

t

posted t

tc/one,before tcomment clone_after

O Py Py Py
\ 4 \ 4 A4

GitHub clone GitHub clone
commit commit

t

revision

O
194

Stack Overflow Post
version N+17 (fixed)

\ 9

Stack Overflow Post
version N (insecure)

Security-relevant
comment added

Figure 8: Timeline of events between two versions of a post.

relevant comment appeared. On average, developers reused
a code snippet ~1.5 years (556 days) after it was posted on
Stack Overflow, and a security-relevant comment appeared
on average ~2.9 years (1,060 days) after the commit. There
could be various reasons for this long interval before a
comment, e.g., initial unawareness about vulnerabilities or
delayed comments by security-savvy users. Consequently,
developers must track Stack Overflow threads with reused
code for a long time to avoid missing relevant comments.

For the remaining 12 cases, a security-relevant comment
was available when the code snippet was committed to
GitHub, i.e., the developer could have been informed about
the issue when adding vulnerable code to the project. On
average, the comment was more than a year (495 days)
present on Stack Overflow at the time of commit to GitHub.

Overall, we found that it takes, on average, almost four
years (1,394 days) for a security-relevant comment to appear
and, on average, nearly ten months (296 days) for a revision
that fixes the security issue. However, we found three posts
whose fixes occurred on the same day an issue was raised,
and these posts affected three projects, with one of the posts
(ID 779960) containing three issues that were commented
on and fixed on the same day.

Discussions on Stack Overflow contribute to the evolu-
tion of code on the platform. When those discussions
have a security nature, they trigger fixes to bugs and
vulnerabilities in code snippets. These findings show
that prior works’ treatment of Stack Overflow code as

TABLE 5: Descriptive statistics for each event type mea-
sured in days. Margin of error for 95% confidence.

Events (in days) Min Median Max Average
All events (N = 29)

tposted — teomment 270 1,394 3,639 1,394+338

tcomment — tre'uision 0 20 1,516 296 200
Commit before comment (N = 17)

tposted — telone_before 89 336 2,289 556 +251

tclone_befo're — tcomment 20 815 3,303 1,060i506
Commit after comment (N = 12)

tecomment — lclone_after 9 224 1,221 4954236

static limits the ability to build software tools to aid
developers in reusing code from Stack Overflow more
securely. We believe that if open-source contributors
are equipped with a tool that consistently monitors
Stack Overflow for security warnings and code fixes to
reused code, those discussions and fixes can be brought
timely to their notice. This will allow for fixes by the
community to propagate faster to developer code bases.

4.3. Responsible Disclosure to Maintainers

We have disclosed the bugs and vulnerabilities we found
to the maintainers of the affected projects. We used the
dedicated security mailing lists to disclose the security issues
found in Apache and Eclipse projects. For projects that do
not define a specific policy, we directly emailed the main
project contributor (i.e., the one with the most commits).
We opened a public GitHub issue ticket for projects with
only bugs (i.e., no security ramifications). We sent out 51
notifications, one for each bug/security issue we found, to
the maintainers of the 43 affected projects. We received
40 responses (from 36 projects), with three indicating the
project is no longer maintained and will not be updated. The
remaining 33 projects responded and provided a fix while
the maintainers of seven projects did not respond.

5. Discussion and Limitations

Similar to the security implications that outdated library
versions pose on the security of production systems [24],
[25]], [39]], outdated code snippets reused from Stack Over-
flow can have security implications for open-source projects.
In our results, half of the code snippets reused in open-
source projects were outdated (RQ1). We did not find evi-
dence that developers updated the code snippets reused from
Stack Overflow after the snippets evolved to newer versions
(RQ2). While prior work has shown that developers reused
vulnerable code snippets from Stack Overflow [3], [6], [9],
[12]], [26]], our results additionally show that such vulnerabil-
ities on Stack Overflow are being discussed and pointed out
by the Stack Overflow community, which may consequently
lead to a fix on Stack Overflow. However, those fixes did not
propagate to the analyzed open-source projects on GitHub
(RQ3). Looking at developers that attributed Stack Overflow
as the source for copied code snippets, our results show that

12

they are not immune to this problem: 13 (30%) of the 43
affected GitHub projects contain attributions to 6 (23% out
of 26) Stack Overflow posts. However, despite attribution,
developers were unaware that the reused snippets received
security discussions and code fixes.

Towards better tool support: Our results provide the
security research community with new insights into the
tool support that can help developers avoid reusing insecure
Stack Overflow code snippets. While software projects have
tools (e.g., Dependabots) for managing library dependencies
and keeping them up to date, there are no tools for managing
dependencies on Stack Overflow snippets. Tools by prior
work [12], [13]] treat code snippets on Stack Overflow as
static and, as a result, do not address the problem of “evolv-
ing” code snippets that need to be monitored for changes.

Based on our results, we envision providing developers
with tools that make it seamless for them to monitor updates
on Stack Overflow. For example, Visual Studio Code (VS
Code) extensions [40]], [41] provide a Stack Overflow search
inside the IDE. However, these tools are limited to only
searching SO for code snippets. Instead, they should support
monitoring the Stack Overflow posts from which a developer
copied code and inform developers about snippet updates
and security discussions. This could be based on machine
learning and natural language inference as in Hark [42]
to detect security-relevant discussions and filter the large
fraction of inconsequential code changes [34]. We believe
this tool support will ultimately bring us closer to solving
the problem of insecure code reuse.

5.1. Security Classification

A big limitation in general for studying Stack Overflow
and our work is the lack of tools/methods for detecting vul-
nerable code snippets in general. Dicos [9] is a good step in
the right direction. However, as we discovered, it is still too
narrow in its language support and scope of vulnerabilities
to be suitable as an automated classifier for our initially large
data set. Consequently, in our methodology, we reduced the
problem space by focusing on outdated and filtered code
snippets, whose total number is feasible for manual verifica-
tion. Thus, our classification trades large scaling for higher
reliability and versatility. Due to this necessary trade-off,
our methodology might miss security-relevant discussions in
other threads on Stack Overflow that were filtered out. For
example, in our study, the filter pipeline discarded 569 po-
tentially security-relevant posts reused in 9,971 file sections
(11.79% of 84,542). For 4,335 of those file sections, the
pipeline selected another security-relevant post as the best
candidate. For the remaining 5,636 file sections, the filter
pipeline selected a non-security-relevant post and filtered out
327 distinct potentially security-relevant posts. We manually
confirmed 202 of the 327 posts as not security-relevant, i.e.,
the pipeline did not miss a security issue discussed in those
Stack Overflow posts. The filter pipeline selected 9 (of the
remaining 125) true positive security-relevant posts as the
best candidate for at least one other file section but always

favored a non-security-relevant post over 116 of the security-
relevant posts reused in 1,112 (1.3%) file sections, for which
we hence may have missed a security issue. Posthoc analysis
of our filtering process indicates that the filter pipeline
tends to favor non-security-relevant posts over security-
relevant posts ((X2, df=1, N=6407) = 11.0674, p <0.001;
see Appendix [B)), which might lead to under-reporting the
number of projects with missing security fixes. However,
the corresponding effect size (Cramer’s V = 0.042) can be
considered negligible and should have very little impact on
our results. Thus, a refined approach without a filter pipeline
might find more GitHub projects with outdated, insecure
code snippets from Stack Overflow than the 43 projects we
discovered. Still, our results demonstrate that the problem of
missing security fixes exists and requires further attention.

The security filter identified 505 posts with security-
relevant keywords (see §4.2.3)), of which 238 were manually
confirmed true positives and 267 confirmed false positives.
This means the security filter has a ~50% chance of cor-
rectly classifying a post as security-relevant. In addition,
we manually verified the remaining 1,785 outdated posts
not matching the keywords of the security filter and found
four with actual security-relevant edits (i.e., 0.22% false
negatives). This means the security filter misses very few but
over-reports security-relevant posts, necessitating additional
manual verification work of true positives. Moreover, like
prior work [9]], our context-based approach to determine
security and bug fixes in Stack Overflow change histories
is limited because commit messages on Stack Overflow are
optional, and we relied on the quality of discussions by
Stack Overflow users. Consequently, when there are no dis-
cussions about insecurities or commit messages mentioning
a fix, our approach considers those cases secure by default.

Lastly, to ensure a high external validity of our results
and minimal false positives, we used a conservative ap-
proach to select the most probable code snippet clone in
our filter pipeline, fine-tuned and selected the minimum
similarity threshold for NiCad, and relied on the fine-tuned
parameters from Baltes et al. [11] to detect exact clones
with PMD CPD. As a result, differences in the false negative
rates of both clone detectors might lead to underestimating
the number of outdated file sections for some of the pro-
gramming languages more than for others.

Despite the trade-off in data set size and the limitations
in clone detection and snippet classification, we discovered
several popular GitHub projects in different programming
languages affected by various security issues in outdated
reused code. Still, those results should be seen as a lower
bound to the problem of insecure, reused, and outdated Stack
Overflow snippets on GitHub.

5.2. Origins of Common Code

In this work, we studied how code reused between Stack
Overflow and GitHub evolves. To create a feasible data set
of snippets for our study, the methodology in this paper
assumes code provenance from Stack Overflow posts to
GitHub projects, i.e., that GitHub developers copy code from

13

Stack Overflow. Hence, when a code fragment appears on
Stack Overflow and GitHub, we focused on code snippets
that appear first on Stack Overflow before their GitHub
counterparts. However, a code snippet on both GitHub and
Stack Overflow could have been independently copied from
a third-party source. For example, prior work [1f], [8]], [23],
[43]] has shown that some code snippets on Stack Overflow
are copied over from tutorials, from GitHub projects, or
other software collections (e.g., Qualitas). The 43 affected
GitHub projects in our results did not contain an attribution
to external sources other than Stack Overflow.

Considering the rich discussions on Stack Overflow,
which we also leveraged for our security classification of
outdated snippets, we think it very promising for future work
to bridge the gap between these two knowledge-sharing
ecosystems [8] and support developers with insights from
Stack Overflow whenever they use code that is present on
Stack Overflow irrespective of whether the code was copied
from Stack Overflow or not. This could further enhance tool
support for developers, as discussed earlier. For our current
security-oriented study, this was impossible considering the
sheer volume of this code overlap (see §4.1.2), and we
focused on outdated snippets that might have been copied
from Stack Overflow to GitHub.

6. Conclusion

We measured the impact of Stack Overflow code artifact
evolution on software projects that rely on specific versions
of code snippets reused from Stack Overflow. The presence
of duplicate code on Stack Overflow made it non-trivial to
pinpoint an exact snippet version reused in a section of a
source file in an open-source project. This prompted us to
build a filter pipeline to reduce the number of code snippet
versions reported as clones in a single source file section.
By analyzing the timeline of reused code snippets, we found
that 51% of code snippets reused from Stack Overflow were
outdated, which affected 2,109 open-source projects. At the
same time, we found no evidence that developers update
reused versions of Stack Overflow code snippets, regardless
of whether the snippets underwent bug or security fixes
on Stack Overflow. Finally, by examining comments and
commit messages of Stack Overflow posts, we found fixes
to 15 security issues that are missing in 43 GitHub projects,
with an additional 20 general code improvements missing
in 26 GitHub projects. Considering the popularity of the 43
projects missing security fixes, we believe this number to
be the lower bound of the affected code bases. Our findings
call for action to provide developers with tools to track
Stack Overflow long-term for security-focused discussions
and code fixes to reused code.

Availability. Our data set and tools are
available at https://osf.io/s2vgm/?view_only=
785ada7blefd4acbaat5a77cc5123076.

https://osf.io/s2vgm/?view_only=785ada7b1efd4ac6aaf5a77cc5123076
https://osf.io/s2vgm/?view_only=785ada7b1efd4ac6aaf5a77cc5123076

References

(1]

(2]

(3]

[4]

(1]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(171

S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Studying the origin,
evolution, and usage of stack overflow code snippets,” in Proc.
16th International Conference on Mining Software Repositories (MSR
2019), 2019.

S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a
good code example?: A study of programming q&a in stackoverflow,”
in Proc. 28th International Conference on Software Maintenance
(ICSM). IEEE Computer Society, 2012.

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you're looking for: The impact of information sources
on code security,” in Proc. 37th IEEE Symposium on Security and
Privacy (SP ’16). 1EEE Computer Society, 2016.

S. Fahl, M. Harbach, T. Muders, L. Baumgirtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in)security,” in Proc. 19th ACM Conference on Computer and
Communication Security (CCS ’12). ACM, 2012.

S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proc. 20th ACM Conference
on Computer and Communication Security (CCS ’13). ACM, 2013.

F. Fischer, K. Bottinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack overflow considered harmful? the impact of
copy&paste on android application security,” in Proc. 38th IEEE
Symposium on Security and Privacy (SP '17). IEEE Computer
Society, 2017.

Y. Acar, C. Stransky, D. Wermke, C. Weir, M. Mazurek, and S. Fahl,
“Developers need support, too: A survey of security advice for soft-
ware developers,” in Proc. Cybersecurity Development (SecDev’17).
IEEE Computer Society, 2017.

S. S. Manes and O. Baysal, “Studying the change histories of stack
overflow and github snippets,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), 2021.

H. Hong, S. Woo, and H. Lee, “Dicos: Discovering insecure code
snippets from stack overflow posts by leveraging user discussions,” in
Annual Computer Security Applications Conference (ACSAC). ACM,
2021.

H. Zhang, S. Wang, H. Li, T. Chen, and A. E. Hassan, “A study
of c/c++ code weaknesses on stack overflow,” IEEE Transactions on
Software Engineering, vol. 48, no. 07, pp. 2359-2375, jul 2022.

S. Baltes and S. Diehl, “Usage and attribution of stack overflow code
snippets in github projects,” Empirical Software Engineering, vol. 24,
no. 3, pp. 1259-1295, Jun 2019.

F. Fischer, H. Xiao, C.-Y. Kao, Y. Stachelscheid, B. Johnson,
D. Razar, P. Fawkesley, N. Buckley, K. Bottinger, P. Muntean, and
J. Grossklags, “Stack overflow considered helpful! deep learning se-
curity nudges towards stronger cryptography,” in Proc. 28th USENIX
Security Symposium (SEC’ 19). USENIX Association, 2019.

M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. K.
Motlagh, “An empirical study of c++ vulnerabilities in crowd-sourced
code examples,” arXiv:1910.01321, 2019.

Stack Overflow. (2022) How to pretty print xml from java? [Online].
Auvailable: https://stackoverflow.com/a/1264912/8462878

T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q a forum reliable?: A study of api
misuse on stack overflow,” in Proc. 40th International Conference on
Software Engineering (ICSE’18), 2018.

D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow in
github: Any snippets there?” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), 2017.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do
code clones matter?” in 2009 IEEE 31st International Conference
on Software Engineering, 2009.

14

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

M. Gharehyazie, B. Ray, and V. Filkov, “Some from here, some from
there: Cross-project code reuse in github,” in 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR),
2017.

T. Diamantopoulos, M.-I. Sifaki, and A. L. Symeonidis, “Towards
mining answer edits to extract evolution patterns in stack overflow,” in
Proc. 16th International Conference on Mining Software Repositories
(MSR ’19). 1EEE Press, 2019.

M. Ahmad and M. O. Cinnéide, “Impact of stack overflow code
snippets on software cohesion: A preliminary study,” in Proc. 16th
International Conference on Mining Software Repositories (MSR’19).
IEEE Press, 2019.

A. Soni and S. Nadi, “Analyzing comment-induced updates on stack
overflow,” in Proc. 16th International Conference on Mining Software
Repositories (MSR ’19). 1EEE Press, 2019.

S. Baltes and C. Treude, “Code duplication on stack overflow,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: New Ideas and Emerging Results,
ser. ICSE-NIER °’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 13-16. [Online]. Available:
https://do1.org/10.1145/3377816.3381744

M. A. Nishi, A. Ciborowska, and K. Damevski, “Characterizing
duplicate code snippets between stack overflow and tutorials,”
in Proceedings of the 16th International Conference on Mining
Software Repositories, ser. MSR ’19. IEEE Press, 2019, p. 240-244.
[Online]. Available: https://doi.org/10.1109/MSR.2019.00048

M. Backes, S. Bugiel, and E. Derr, “Reliable third-party
library detection in android and its security applications,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS 16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 356-367. [Online].
Available: https://doi.org/10.1145/2976749.2978333

T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson,
and E. Kirda, “Thou shalt not depend on me: Analysing the use of
outdated javascript libraries on the web,” in Network and Distributed
System Security Symposium (NDSS), 2 2017.

R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
stackoverflow: An exploratory study on android apps,” Information
and Software Technology, vol. 88, pp. 148-158, 2017.

Stack Overflow. (2023) Stack overflow trends. [Online]. Available:
https://insights.stackoverflow.com/trends

Guesslang. (2021) Guesslang documentation. [Online]. Available:
https://guesslang.readthedocs.io/en/latest/

G. Gousios, “The ghtorent dataset and tool suite,” in Proc. 10th
Working Conference on Mining Software Repositories (MSR ’13).
IEEE Press, 2013.

C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code nor-
malization,” in Proc. 16th IEEE International Conference on Program
Comprehension, 2008.

PMD Source Code Analyzer Project. (2022) Finding duplicated
code with cpd. [Online]. Available: https://pmd.github.io/latest/pmd_|
userdocs_cpd.html,

Stack Overflow. (2022) How to make a copy of a file in android?
[Online]. Available: https://stackoverflow.com/a/9293885/8462878

——. (2022) Standard concise way to copy a file in java? [Online].
Available: https://stackoverflow.com/a/19542599/8462878

S. Baltes and M. Wagner, “An annotated dataset of stack overflow
post edits,” in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, ser. GECCO °20. New
York, NY, USA: Association for Computing Machinery, 2020,
p. 1923-1925. [Online]. Available: https://doi.org/10.1145/3377929.
3398108

https://stackoverflow.com/a/1264912/8462878
https://doi.org/10.1145/3377816.3381744
https://doi.org/10.1109/MSR.2019.00048
https://doi.org/10.1145/2976749.2978333
https://insights.stackoverflow.com/trends
https://guesslang.readthedocs.io/en/latest/
https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://stackoverflow.com/a/9293885/8462878
https://stackoverflow.com/a/19542599/8462878
https://doi.org/10.1145/3377929.3398108
https://doi.org/10.1145/3377929.3398108

[35] K. Pan, S. Kim, and E. J. Whitehead, “Toward an understanding
of bug fix patterns,” Empirical Softw. Engg., vol. 14, no. 3,
p. 286-315, jun 2009. [Online]. Available: https://doi.org/10.1007/
s10664-008-9077-5

[36] H. Osman, M. Lungu, and O. Nierstrasz, “Mining frequent bug-fix
code changes,” in 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), 2014, pp. 343-347.

[37] Common Weakness Enumeration. (2022) Common weakness
enumeration. [Online]. Available: https://cwe.mitre.org/|

[38] Stack Overflow. (2022) How do i trim leading/trailing whitespace
in a standard way? [Online]. Available: https://stackoverflow.com/a/
122721/8462878

[39] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me
updated: An empirical study of third-party library updatability on
android,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS *17. New
York, NY, USA: Association for Computing Machinery, 2017,
p- 2187-2200. [Online]. Available: https://doi.org/10.1145/3133956.
3134059

[40] Extensions for Visual Studio Code. (2023) Stackoverflow instant
search. [Online]. Available: https://marketplace.visualstudio.com/
items?itemName=Alexey- Strakh.stackoverflow-search

. (2023) Stackfinder. [Online]. Available: https://marketplace.
visualstudio.com/items?itemName=mark-fobert.stackfinder

[42] H. Harkous, S. T. Peddinti, R. Khandelwal, A. Srivastava,
and N. Taft, “Hark: A deep learning system for navigating
privacy feedback at scale,” in 43rd IEEE Symposium on Security
and Privacy, SP 2022, San Francisco, CA, USA, May 22-
26, 2022. IEEE, 2022, pp. 2469-2486. [Online]. Available:
https://doi.org/10.1109/SP46214.2022.9833729

[43] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on
Software Engineering, vol. 47, no. 3, pp. 560-581, 2021.

[41]

Appendix A.
Calibrating NiCad clone detector

We needed to find the optimal NiCad parameters for
working with Stack Overflow code snippets. To this end,
we calibrated NiCad’s threshold and minsize configuration
parameters, i.e., the minimum number of LoC and the type
of clone (type-1, type-2, or type-3).

To measure the performance of different configuration
settings, we extracted 3, 824 posts that are directly attributed
in the SOTorrent dataset as a ground truth. We removed
all attributed question posts from this set for two reasons:
1) developers are more likely to copy code snippets of
answer posts [[11]]; 2) we found that many developers tend to
wrongly attribute the question of the answer that contains the
snippet. Of the 3, 824 answers, 364 did not contain any code
snippets. From the remaining 3,460 answers, we extracted
4,999 code snippets after filtering out all snippets with
less than five lines of code—the minimum code length for
NiCad—resulting in a total of 2, 656 code snippets. Figure 9]
shows the distribution of the LoC of code snippets in the
resulting attributed dataset. For each answer post in the
dataset, we downloaded all the Java files on GH in which the
corresponding answer was attributed. With this set of Stack
Overflow posts and Java files, we measure the performance
of our clone detection based on precision and recall.

TABLE 6: Effectiveness of different NiCad configurations
in detecting attributed code snippets in GitHub source files.

Configuration \ Clone Detection

minsize Cgso type | Chicad TP FP Prec Rec
5 2,656 typel 317 317 0 100% 12%
type2 374 368 6 98% 14%

type3 667 646 21 97% 24%

10 770 typel 196 196 0 100% 26%
type2 27 27 0 100% 30%

type3 473 464 9 98% 60%

15 452 typel 108 108 0 100% 24%
type2 126 126 0 100% 28%

type3 297 295 2 99% 65%

o

)
@

WS —

5 6 7 8 9 10 " 12 13 14 15 >15
Line Count

o
>

o
=

Cumulative Frequency

o
o

Figure 9: Distribution of the LoC for code snippets in the
attributed dataset. The shaded area indicates the snippet sizes
our NiCad configuration covers.

Table [6] summarizes the results of running NiCad for the
different configuration parameters, where Cj, is the set of
snippet clones attributed in Java files and C,;cqq is the set
of snippet clones identified by NiCad. We manually verified
all reported clones and recorded each run’s true and false
positives. While a minsize = 5 would theoretically be able
to detect all 2, 6565 clones, we found that NiCad has a very
low recall for this parameter. This is rooted in a conservative
classification of true positives: in most cases, it was very
hard to tell, with so few code lines, whether the snippet
was reused from Stack Overflow or the developer actually
wrote the snippet. A minsize = 15 does not work well
either since the number of potentially detectable clones is
very small (Cso = 452 or 17% of all possible clones).
The reason is that code snippets on Stack Overflow are, on
average, 12 lines long [1]], and setting a minimum threshold
of 15 lines will exclude many snippets. Thus, we selected
minsize = 10, where the best balance between precision
and recall is achieved when detecting type-3 clones. We
suspect the reason to be that most code snippets on Stack
Overflow are not compilable, and the import statements for
libraries are rarely included in the snippets, necessitating
code adaptions of type-3. Thus, we selected < (minsize =
10, type3 > as final calibration for NiCad.

We use the selected parameters and ran the clone detec-
tor on the Java and C code snippets sample shown in Table[I]
Figure [I0] shows the cumulative frequently distribution for
the NiCad similarity values.The vast majority (80,665 or
95.4%) of the clones are identical (NiCad score of 100).
To also include highly similar but not identical clones, we
need to determine a cutoff point for the similarity score.
We manually inspected some of the reported clones for each

https://doi.org/10.1007/s10664-008-9077-5
https://doi.org/10.1007/s10664-008-9077-5
https://cwe.mitre.org/
https://stackoverflow.com/a/122721/8462878
https://stackoverflow.com/a/122721/8462878
https://doi.org/10.1145/3133956.3134059
https://doi.org/10.1145/3133956.3134059
https://marketplace.visualstudio.com/items?itemName=Alexey-Strakh.stackoverflow-search
https://marketplace.visualstudio.com/items?itemName=Alexey-Strakh.stackoverflow-search
https://marketplace.visualstudio.com/items?itemName=mark-fobert.stackfinder
https://marketplace.visualstudio.com/items?itemName=mark-fobert.stackfinder
https://doi.org/10.1109/SP46214.2022.9833729

80,665 (95.4%) —|:

CumSum (log)

70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
NiCad Similarity Score (Java / C)

Figure 10: Cumulative sum of detected clone pairs for
NiCad similarities above 70%.

TABLE 7: Cross table between posts filtered vs. flagged by
our security filter, with the observed values and the expected
values.

Not Flagged Flagged Total
Not Filtered Out 3,267 (3213.02) 974 (1027.98) 4,241
Filtered Out 1,587 (1640.98) 579 (525.02) 2,166
Total 4,854 1,553 6,407

language and noticed that some Java clone pairs with a 70%
similarity score looked structurally similar but semantically
different. Since this may skew our results, we resorted to
manually verifying a random sample of the reported clones
and selected clones belonging to five similarity groups (i.e.,
70%, 75%, 80% and 85%). The aim of the manual verifi-
cation process was to select an optimal similarity threshold
with which we can be confident that a detected clone is a
true clone. The random sample consisted of 30 clone pairs
for each similarity group—split equally among question and
answer posts—and two researchers manually verified the
clone pairs for each group. We found that 21 of the clone
pairs in the 70% similarity group were false positives, 13
clone pairs in the 75% similarity group were false positives,
8 clone pairs in the 80% similarity group were false positives
and 1 clone pair in the 85% similarity group was a false
positive. We decided to additionally select a random sample
of clone pairs in the 83% similarity group, manually verified
those, and found 2 false positive clones. As a result, we
selected 83% as a similarity threshold for clones of Java
code snippets. We performed the same experiment for the
reported clone pairs for the C language but found no false
positives for the 70% similarity group. Thus we selected
70% as a similarity threshold for clones of C code snippets.

Appendix B.
Chi-Square Statistical Test

We conducted a Chi-Square (x?) test to understand
whether the filter pipeline favors non-security-relevant posts
over potentially security-relevant posts. Table [7] shows the
observed and expected values based on the number of posts
that are input to filter F3 and the output of filter F7. We
excluded filters F1 (Attribution) and F2 (Commit Date) to
focus on potential security-relevant posts discarded by the
heuristics-based part of the filter pipeline.

16

10,000 9,592

5,662
1,000

100

N
o

Reuse count (log)

Snippet ID

Figure 11: Frequency of reused individual snippets.

TABLE 8: Top-10 most reused outdated snippets

Snippet ID Reuse count ‘ Snippet ID Reuse count
184588891 9,592 121742444 1,044
49722853 5,662 67677724 788
243061964 1,372 23640102 717
200993642 1,271 216546726 651
229059551 1,227 188694515 640

Appendix C.
Frequency of Outdated Snippet Reuse

Figure [T1] depicts how often each of the 2,302 distinct
snippets were reused in an outdated version in GitHub
projects. The average outdated snippet in our data set is
reused 16.87+9.83 times. Table [§] lists the top-10 most
reused outdated snippets in our data set.

Appendix D.
Projects Missing Improvements

Table[9]shows the list of GitHub projects missing various
improvements to code reused from Stack Overflow. Java
projects (17/20) were mainly affected by those and were
concerned with the release of Java 8 in which functional
APIs were added to the standard library. Together, these
projects were watched on average 179.2 times (max. 783),
received an average of 3,790.9 stars (max. 12,361), and were
forked on average 94.6 times (max. 809).

Appendix E.
Projects Missing Security Fixes

Table [T0] shows the list of GitHub projects missing
security fixes on Stack Overflow.

Appendix F.
Additional Examples of Insecure Snippets

In Section 2] we provided an example showing how a fix
to an XML eXternal Entities (XXE) injection vulnerability
was missed in the Apache Lucene-Solr and the Apache
Chemistry projects. Here, we provide three additional ex-
amples of other issues we found.

TABLE 9: GitHub projects missing fixes to code improvements on Stack Overflow

Project Language Watch Fork Star Contributors Last Commit (year)
OsmAnd (OSM Automated Navigation Directions) Java 138 875 3,115 809 2022
Azure SDK for Java Java 280 1,431 3,998 447 2022
F-Droid Client Java 57 104 706 353 2022
GeoTools (The Open Source Java GIS Toolkit) Java 110 1,008 1,274 235 2022
J20bjC (Java to Objective-C Translator and Runtime) Java 307 920 5,877 82 2022
sshj (SSHv?2 library for Java) Java 118 517 2,094 69 2022
Eclispe Deeplearning4] (DLA4J) Java 783 4,923 12,361 57 2022
MGit (Git client for Android) Java 45 121 594 56 2022
GassistPi (Google Assistant for Single Board Computers) Python 77 309 977 16 2022
Apache POI Java 76 593 1,401 15 2022
PictureSelector Java 199 2,635 11,450 5 2022
WebRTC Chrome Extensions JavaScript 80 483 894 5 2022
Open Event Website App Generator JavaScript 38 870 1,990 89 2021
React Designer JavaScript 42 241 1,794 8 2021
LitePal for Android Java 293 1,587 7,835 4 2021
w3af (Web Application Attack and Audit Framework) Python 193 1,151 3,917 64 2020
WebRTC-Experiment JavaScript 669 3,850 10,603 11 2020
Matisse Java 241 2,011 12,258 28 2019
MusicDNA Java 93 590 2,737 8 2019
libstreaming Java 267 1,036 3,215 6 2019
Friend Spell Java 11 74 415 6 2017
Pretty Curved Privacy (PCP) C 7 5 125 3 2017
InstaMaterial Java 307 1,498 5,028 3 2016
VOMS Java API Java 10 7 5 4 2016
Livestreamer Python 208 617 3,844 75 2016
Breeze C 9 18 57 1 2013
Average 179.2 1056.7 3790.9 94.6

Max 783 4,923 12,361 809

bl
| 8 @mohitum007 i th fle fils to copy then an exception is thrown. use a try catch block when caling |
the method. -

(a) Answer 9293885 with CWE-404.
of the post.

the STATE_SEARCH
von't trigger the assert

I'd suggest changing “os.path.exists" to "os.path.isf Other Unix this might falsely match z_|

| directory with the +x bit set. | also find it useful to add this to the top of the function: import sys; if |
e plaion = w32+ v ot pogram s ene-):program om et This vy under

| Vndows yomcan e 0 ke ol or ~cale e, ety ook e o |

(b) Buffer Overflow issue fixed in version 3 (c) The most reused, outdated, buggy (no

CWE) snippet with a subsequent fix.

Figure 12: Examples of insecure snippets.

Improper Release of Resource (CWE-404). This issue
was found and fixed in 3 distinct posts and the versions
containing the issue are reused in 6 GH projects. Figure [12a]
shows two versions of post #9293885: The version on the
left copies data from a source input stream to a destination
output stream. Should an exception be thrown during the
copy operation, the closing API call will not be reached
and the JVM will not garbage collect the resource.

This post is the accepted answer in the thread and has
at the time of writing three versions. The insecure version
was introduced in version #1 of the post on Feb 15, 2012
and 425 days later, on April 15, 2013, a comment was made
indicating that the file resource may not be properly garbage
collected when an exception is thrown. Three comments

17

raise this issue, and we pick the earliest comment of those.
The issue was subsequently fixed on June 9, 2017, by the
author of the answer in version # 2 of the post. However,
the fix did not propagate to the 6 projects containing the
insecure version.

Buffer Overflow (CWE-120). Answer post 2766963 (see
Figure[12b) contains a buffer overflow vulnerability that was
introduced in version #1 of the answer on May 4, 2010. The
vulnerable version was reused in the STATSD-C project and
committed on Oct. 25, 2011. On Oct 16, 2011 (530 days
after it appeared on Stack Overflow), a comment raised the
issue, which was subsequently fixed by the same author in
version #3 of the post on Feb 1, 2012.

TABLE 10: GitHub projects missing bug/security fixes to code on Stack Overflow. Two projects (*) were retired months
after we curated our GitHub projects sample; nonetheless, the maintainers were still notified.

Project Weakness Language Watch Fork Star Contributors Last Commit (year)
Odoo Undefined Behaviour JavaScript 1,494 16,121 24,881 1,385 2022
Wikimedia Commons Android app ~ CWE-404 Java 60 968 731 270 2022
The Fuck Others Python 848 3,189 70,614 176 2022
Apache NetBeans CWE-404 Java 157 689 1,836 175 2022
Amazon S3cmd Others Python 103 850 3,962 175 2022
Open Event Frontend CWE-1339 Python 22 1,694 2,188 151 2022
CARTO CWE-690 JavaScript 207 672 2,582 134 2022
logback CWE-404 Java 167 1,115 2,404 104 2022
Cider CWE-754 (2) JavaScript 24 174 348 65 2022
Apache Nutch Undefined Behaviour Java 240 1,199 2,356 46 2022
JPEXS Free Flash Decompiler Others Java 187 534 3,128 33 2022
Python Audio Analysis Library CWE-754 Python 207 1,083 4,742 22 2022
WordOps CWE-772 Python 58 167 866 21 2022
Eclipse N4JS CWE-772 Java 11 25 26 18 2022
Weevely Undefined Behaviour Python 132 548 2,596 18 2022
Gmail Backup Software (Gmvault) CWE-172 Python 80 272 3,429 16 2022
RomRaider CWE-172 Java 80 272 3,429 15 2022
Kubebox CWE-690 JavaScript 47 139 1,912 13 2022
* AndroidTree View CWE-475 JavaScript 84 614 2,884 5 2022
Chrome-Extensions CWE-1339 JavaScript 80 483 894 5 2022
Apache Lucene-Solr CWE-611 Java 315 2,723 4,357 234 2021
MoneyManagerEx for Android CWE-404 Java 49 167 327 17 2021
Apache Fineract Android Client CWE-404 Java 20 147 31 13 2021
Faster-RCNN in Tensorflow Others Python 88 1,149 2,461 7 2021
STATSD-C CWE-120 C 6 13 75 6 2021
Faster RCNN with PyTorch Others Python 52 464 1,609 3 2021
Gnucash for Android CWE-475 Java 101 525 1,143 46 2020
AppScale GTS Undefined Behaviour Python 159 293 2,419 39 2020
Eclipse Ceylon Undefined Behaviour Java 41 64 385 34 2020
HowManyPeopleAreAround Others Python 165 383 6,687 12 2020
WebRTC-Experiment CWE-1339(2) JavaScript 669 3,852 10,604 11 2020
* Apache Chemistry CWE-611 Java 11 60 46 6 2019
Chinese OCR Others Python 93 1,077 2524 1 2019
shadowsocks-libev Others C 14 900 87 81 2017
OpenPGP for Android Others Java 31 79 237 59 2017
Mirai BotNet CWE-20, CWE-704 C 545 3,362 7,323 5 2017
FastER RCNN (TFFRCNN) Others Python 52 431 890 1 2017
ngrok-libev CWE-754, CWE-835, CWE-704 C 9 25 34 1 2016
Layout Cast Others Python 71 185 1,711 5 2015
Hashkill Password Recovery Tool CWE-20, CWE-754, CWE-835 C 23 55 183 3 2014
Breeze (Simple) HTTP Server CWE-194 C 9 19 57 1 2013
PHP bindings to libsass (sassphp) CWE-704 C 2 67 40 1 2012
Tigger CWE-704 C 2 6 40 6 2011
Average 1574 1,0854 4089.6 79.7

Max 1,494 16,121 70,614 1,385

Most Buggy Snippet (No CWE). Figure shows the
most reused, outdated, buggy (no CWE assigned) code
snippet from answer 377028. The insecure version #1 of
the answer was posted on December 18, 2008, and reused
in 8 open-source projects. A comment on July 22, 2011
(946 days after posting) pointed out that the code might
incorrectly match directories with the +x bit set. The snippet
was fixed 260 days later; however, the fix did not propagate
to the 8 GH projects.

18

Appendix G.
Meta-Review

G.1. Summary

This paper presents a measurement of code similarity
between Stack Overflow and Github to determine whether
developers change code copied/pasted from Stack Overflow
if the post is fixed after the initial copy to remove a
vulnerability. The paper presents a pipeline using clone de-
tection and commit/comment-based verification to identify
and confirm security-relevant edits. The method is evaluated
on 1.5M snippets and 11,479 projects, revealing that 2,109
projects use outdated code and 43 projects have unpatched
security issues from Stack Overflow snippets.

G.2. Scientific Contributions

o Provides a Valuable Step Forward in an Established
Field

e Creates a New Tool to Enable Future Science
« Identifies an Impactful Vulnerability

G.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an estab-
lished field. The paper investigates whether developers
track code copied from StackOverflow that may include
vulnerabilities to ensure their code is appropriately
fixed when those edits are made on StackOverflow and
demonstrate the security impacts associated with this
lack of tracking.

2) The paper creates a new tool to enable future science.
This paper created a pipeline for comparing code on
StackOverflow and Github to identify vulnerabilities
based on code fixes in StackOverflow.

3) This paper identifies an impactful vulnerability. The
paper studies the vulnerabilities introduced by open-
source contributors’ failure to track Stack Overflow
(SO) code snippet security updates. By taking ad-
vantage SOTorrent dataset and crawling open-source
Github repos, the paper evaluates 1.5M code snippets
over 11,479 projects, finding 2109 projects using out-
dated code and 43 projects having security issues.

G.4. Noteworthy Concerns

There remain some questions about the accuracy of the
filtering pipeline. Two reviewers believed there may still be
inaccuracies in the filtering in cases where known attribution
is not available and where false-negative cases due to clone
detection errors (specifically with PMD CPD) occur.

19

	Introduction
	A Primer of Stack Overflow
	Related Works
	Stack Overflow
	Third-party Libraries

	Effects of Code Snippet Evolution
	Research Methodology
	Study data sets
	Clone detection
	Identifying best candidates
	Determining Outdatedness
	Finding Security Fixes
	Manual Verification of Security-relevant Edits

	Results and Findings
	Projects missing updates on Stack Overflow (RQ1)
	Detecting code snippet updates (RQ2)
	Security updates on Stack Overflow (RQ3)

	Responsible Disclosure to Maintainers

	Discussion and Limitations
	Security Classification
	Origins of Common Code

	Conclusion
	References
	Appendix A: Calibrating NiCad clone detector
	Appendix B: Chi-Square Statistical Test
	Appendix C: Frequency of Outdated Snippet Reuse
	Appendix D: Projects Missing Improvements
	Appendix E: Projects Missing Security Fixes
	Appendix F: Additional Examples of Insecure Snippets
	Appendix G: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

