
Stack Overflow Meets Replication: Security Research Amid Evolving Code Snippets

Alfusainey Jallow§*, Sven Bugiel§
§ CISPA Helmholtz Center for Information Security, * Saarland University

Abstract
We study the impact of Stack Overflow code evolution on

the stability of prior research findings derived from Stack
Overflow data and provide recommendations for future stud-
ies. We systematically reviewed papers published between
2005–2023 to identify key aspects of Stack Overflow that
can affect study results, such as the language or context of
code snippets. Our analysis reveals that certain aspects are
non-stationary over time, which could lead to different con-
clusions if experiments are repeated at different times. We
replicated six studies using a more recent dataset to demon-
strate this risk. Our findings show that four papers produced
significantly different results than the original findings, pre-
venting the same conclusions from being drawn with a newer
dataset version. Consequently, we recommend treating Stack
Overflow as a time-series data source to provide context for
interpreting cross-sectional research conclusions.

1 Introduction

In recent years, several security-focused studies [5,6,19,22,25,
27,37,56,57,61,62,68,78,84] have examined Stack Overflow
to analyze the security of shared code on the platform, develop
tools for secure code reuse, or use it as a proxy for studying
developer behavior. This research is fostered by the quarterly
releases of a dataset containing all content created on the
Stack Exchange Inc. platform since its launch in 2008. Right
now, about 60 million posts (24 million questions and 35.8
million answers) [39] containing over 91 million comments
are publicly available for analysis.

However, Stack Overflow code and content evolves as the
community adds and updates snippets [13, 37, 84]. This code
evolution has already been shown to negatively affect develop-
ers who reuse a specific snippet version from Stack Overflow
without tracking updates for security fixes [43].

Like developers, security researchers may also study the
content of the Stack Overflow data set only using the current
version, i.e., cross-sectional studies. While cross-sectional

studies provide valuable and novel insights into the under-
lying data, other disciplines [14, 32, 81] and also software
engineering research [74] suggest that complementing these
insights with longitudinal trend and time series analysis pro-
vides a better context for interpreting findings. Transferring
these lessons to Stack Overflow code evolution raises ques-
tions about how this evolution affects cross-sectional research
findings based on particular dataset versions and what lessons
can be learned for future studies using Stack Overflow data.
While a shift in research results due to a shift in the data is
intuitive, this phenomenon has not been systematically stud-
ied before for Stack Overflow-based data-driven research. To
offer new insights into this issue, this paper aims to address
the following meta-research questions:

MQ1: Which aspects of Stack Overflow affect the results of
prior research?

MQ2: How much do Stack Overflow code snippets and sur-
rounding context evolve?

MQ3: How would the results of prior research differ if repli-
cated on a newer Stack Overflow dataset version?

To answer our research questions, we surveyed the litera-
ture for papers studying the security properties of code snip-
pets on Stack Overflow. This yielded 42 highly relevant pa-
pers, which we systematized according to the Stack Overflow
aspects their methods relied on (e.g., programming language
or the context of snippets). This systematization shows that
the targeted programming language may affect the stability of
results over time and that most works leverage some form of
code classification, whose results can be immediately affected
by code revisions (MQ1). Further, we conducted a time series
analysis to understand how code snippets and security- and
privacy-related discussions on Stack Overflow evolve. Our
data shows that programming languages trend differently re-
garding their overall number of added snippets and their ratio
of security-relevant edits. Moreover, we found that the frac-
tion of security-relevant comments on Stack Overflow steadily
increased. As a result, studies focusing on particular program-
ming languages will likely find a different landscape when

conducted at various points in time (MQ2). Together, these
two insights provide an intuition about how prior research
results may shift in light of the evolution of Stack Overflow
content. To provide concrete evidence for the impact of this
evolution on research results (MQ3), we conducted six replica-
tion studies of prior work [22, 25, 27, 37, 62, 84] using a more
recent data set version. We find that the results of multiple
works shift over time [22, 37, 62, 84]. For example, the land-
scape of CWEs in C/C++ code snippets [84] has significantly
shifted, and Stack Overflow now contains proportionally more
vulnerable snippets with different ratios for CWE types. Only
the results of two papers on crypto API misuse in Java snip-
pets [25,27] remained stable (see [45]). We postulate that this
may be due to the particular niche topic that requires domain
experts to identify and fix such vulnerabilities. Based on our
replication studies, we offer advice for future research involv-
ing Stack Overflow data. A shift in results does not mean that
the results are invalid but missing context. We recommend
that researchers consider data on Stack Overflow as time-
series data and discuss their results as a trend model rather
than a cross-sectional analysis—taking inspiration from meth-
ods in economics, environmental science, or medical studies.
This approach provides a more meaningful context for the
results, allowing us to determine whether the observed issues
are short-term trends or persistent systemic issues.

2 Background & Motivation

Developers seeking advice for a programming problem can
create a question post on Stack Overflow, which other de-
velopers can answer. The question and all the answers are
called posts, each with a unique identifier. Developers can also
comment on posted code snippets through Stack Overflow’s
commenting feature. Comments made by other developers
are known to induce updates to posts [70] or raise bug reports
and point out security vulnerabilities [37, 43, 84].

Stack Exchange Inc. has a quarterly release cycle of all
data created on the platform since its inception in 2008. This
recurring release allows researchers to tap into this rich data
source (e.g., [22, 25, 27, 37, 43, 61, 62, 84]). Unfortunately,
the Stack Exchange dataset only provides versioning at the
level of whole posts and not at the level of individual text and
code snippets, which makes it non-trivial to track and analyze
changes to individual code snippets contained in a post. The
SOTorrent open dataset by Baltes et al. [13] is based on the
official Stack Exchange data and provides version control at
the level of individual text and code snippets. For this reason,
it is popular among researchers studying Stack Overflow.

Motivating Example Figure 1 depicts an example snip-
pet [73] from the 350+ examples of the results of Zhang et
al. [84] that were affected by Stack Overflow evolution. Zhang
et al. used the 12/2018 version of the SOTorrent dataset to

Figure 1: First version of the snippet (left) labeled as insecure
and unmodified with three CWE instances. The 2nd version
(right) shows both instances of CWE-775 fixed on July 4,
changing the snippet’s status to improved.

study whether code revisions improve security. They identi-
fied two CWEs in this snippet: two instances of CWE-775
and one of CWE-401, all introduced in the first version in
January 2013. By December 2018, this snippet had never been
edited.Therefore, the authors correctly labeled the snippet as
insecure and concluded that the snippet had never been re-
vised to address the three CWE instances. By July 2020, the
snippet had been revised to fix both CWE-775 instances. This
revision, posted after the authors sampled their data, changed
the snippet’s status to improved.

The example shows that a code snippet can undergo edits
throughout its lifespan, causing its security status to change
over time. Consequently, code snippets might be insecure at a
given time but secure at a future time or vice-versa. Therefore,
it seems prima facie intuitive for researchers studying Stack
Overflow snippets to conduct measurements at multiple points
in time using different dataset versions to account for these
fluctuations. Integrating these evolving trends and changes in
snippets may enhance the robustness of research studies.

3 Systematization of Relevant Works

To understand how prior work may be affected by Stack Over-
flow evolution (MQ1), we systematize studies that investi-
gated the security properties of Stack Overflow code snippets.
First, we systematically surveyed the literature for relevant
works (§3.1). Following this, we created a taxonomy of the
methodologies by those studies for analyzing Stack Overflow
datasets (§3.2). Two researchers conducted this systematiza-
tion and decided on the criteria for the taxonomy.

3.1 Literature Search
We conducted a systematic literature review following the
guidelines by Kitchenham and Charters [47].

Inclusion and Exclusion Criteria. The inclusion criteria
are that the study: IC1. must focus on the Stack Overflow

Stack Exchange Meta
(n=210)

SOTorrent Citations
(n=150)

Studies included
(n=1)

Id
en

tifi
ca

tio
n

Selected Proceedings
and Journals (n=1,104)

ACM DL
(n=5,957)

IEEE
Xplore

(n=6,150)

Records retrieved
(n=12,107)

Records retrieved
(n=9,152)

Deduplication
(n=2,955)

Manual
filtering
(n=209)

Records retrieved
(n=128)

Exclusion
criteria (n=22)

GPT4o Included
(n=9)

GPT4o
Excluded
(n=119)

Studies included
(n=6)

Manual
filtering /

Deduplication
(n=3)

Sc
re

en
in

g
El

ig
ib

ilit
y

In
cl

ud
ed

GPT4o Included
(n=31)

GPT4o
Excluded
(n=1,073)

GPT4o Included
(n=52)

GPT4o
Excluded
(n=9,148)

Studies included
(n=22)

Studies included
(n=13)

Manual
filtering /

Deduplication
(n=9)

Manual
filtering /

Deduplication
(n=39)

Studies included (n=42)

Figure 2: PRISMA flowchart of our literature review

Listing 1: Search terms for literature search
" stackoverflow " OR "stack overflow" OR "crowd knowledge" OR
"crowdsource knowledge" OR "crowd−source knowledge" OR "Q&A websites" OR
"Q&A sites" OR "social Q&A websites" OR "online Q&A communities" OR
"community question answering" OR "knowledge sharing" OR "crowdsourcing" OR
"knowledge−sharing" OR "Q&A Forums" OR "Online Code Snippets"

website. IC2. must examine code snippets on Stack Overflow.
IC3. must analyze the security of code snippets or identify and
address bugs or faults in snippets. IC4. must be published be-
tween 01/2005 and 12/2023. IC5. is a journal paper or in con-
ference proceedings that are DBLP-indexed. The exclusion
criteria are: EC1. Studies focusing only on code reuse from
Stack Overflow without studying the security of or identifying
bugs or faults in snippets. EC2. Publications outside the date
range in IC4. EC3. Systematic reviews or meta-analyses, as
only primary studies are considered. EC4. Non-peer-reviewed
studies (e.g., technical reports).

Search Strategy. Figure 2 depicts the flow of our systematic
literature review (SLR). We manually reviewed the titles and
abstracts of studies listed on the Meta Exchange thread [72]
listing academic papers that use Stack Exchange datasets.
This yielded one relevant paper. Next, we retrieved all studies
that cited the SOTorrent dataset [13], a widely used dataset
for studying Stack Overflow. Of these 150 studies, 128 fit
the inclusion criteria. Following the recommendations by
Kitchenham and Charters [47], we automated part of the SLR.
We employed OpenAI’s GPT-4o model to scan abstracts and

identify studies focusing on the security of Stack Overflow
code snippets. A preliminary evaluation of GPT-4o showed
that it performs well in classifying studies based on our inclu-
sion and exclusion criteria (details in [45]). We use GPT-4o
to screen non-relevant studies based on a better contextual
understanding of security concepts than keyword-based fil-
tering. Papers identified as relevant by GPT-4o are manually
verified through full-text analysis. With the help of GPT-4o,
we identified six additional relevant studies among the 128
candidates. Based on the reviewed studies, we created a list of
search terms to identify all research studies related to Stack
Overflow, irrespective of whether they analyzed code snip-
pets or investigated their security. The search terms are listed
in Listing 1. We used these terms to search the proceedings
of 29 conferences and the volumes of 3 journals from secu-
rity & privacy, HCI, and software engineering venues (full
list in [45]). We identified 1,104 matching studies across all
venues. Using GPT-4o, we analyzed their abstracts, resulting
in 22 confirmed relevant studies. We conducted additional
searches in IEEE Xplore and ACM Digital Library using the
same search terms. After deduplication, this resulted in 9,152
unique publications, which we retrieved from the two libraries.
Using GPT-4o, we confirmed an additional 13 studies that
met our criteria, totaling 42 relevant studies.

3.2 Comparison Criteria

Our literature search yielded 42 relevant studies. We reviewed
the full text of each study and its artifacts to develop criteria
for comparison of different works. We found nine criteria,
explained below, and Table 1 compares the 42 considered
studies based on these criteria. Criteria D1–D5 define depen-
dencies on Stack Overflow data (used in §4), where criteria
R1–R4 are relevant for our replication studies (in §6). For pre-
sentation, we adopt the pictogram-based visualization style
common in Systematization of Knowledge papers [21].
D1. Programming Languages: Lists the programming lan-
guage(s) of code snippets investigated in a study. If a study
selects snippets independently of language, we assign ✪.
D2. Code Scanners: Off-the-shelve scanners (✔) or custom
code classifiers (✪) can be used to find security weaknesses
or general code quality issues in code snippets. For custom
solutions, we list the techniques for finding security flaws, e.g.,
static analysis, machine learning, or graph query analysis. We
assign ✘ for studies detecting security issues manually.
D3. Code Evolution: Indicates whether a study consid-
ered (✔) code evolution in their methodology or not (✘).
D4. Surrounding Context: Comments and post descriptions
are natural language text that provides context around code
snippets. We assign ✔ if a paper utilizes surrounding context
to classify code snippets (e.g., using NLP); otherwise, ✘.
D5. Sample Size Filter: Studies may exclude code snippets
based on specific criteria. For example, a study examining
cryptographic API usage in Java might filter out snippets that

Table 1: Comparison of security-focused studies on Stack
Overflow. We replicated the highlighted studies.

D
at

as
et

Sn
ap

sh
ot

D
1.

Pr
og

.L
an

gu
ag

es

D
2.

C
od

e
Sc

an
ne

rs

D
3.

C
od

e
E

vo
lu

tio
n

D
4.

Su
rr

ou
nd

in
g

C
on

te
xt

D
5.

Sa
m

pl
e

Si
ze

Fi
lte

r

R
1.

A
rt

ifa
ct

Av
ai

la
bi

lit
y

R
2.

L
an

gu
ag

e
D

et
ec

tio
n

R
3.

C
od

e
R

eu
se

D
et

ec
t.

R
4.

H
um

an
-C

en
te

re
d

Zhang et al. [84] 12/2018 C ✔ ✔ ✘ ✔ ✘ ✪, M ✘ ✘

Hong et al. [37] 12/2020 C ✪, N ✔ ✔ ✔ # ✔ ✪, S ✘

Fischer et al. [27] 03/2018 J ✪, M ✘ ✘ ✔ G# N/A ✘ ✘

Fischer et al. [25] 03/2016 J ✪, M ✘ ✘ ✔ G# N/A ✪, P ✘

Rahman et al. [62] 12/2018 P ✪, SM ✘ ✘ ✔ H# ✔ ✘ ✘

Campos et al. [22] 12/2018 JS ✔ ✘ ✘ ✔ ✪ ✔ ✔ ✘

Verdi et al. [78] 09/2018 C ✘ ✘ ✘ ✔ G# ✔ ✔ ✘

Selvaraj et al. [68] 01/2022 C ✔ ✔ ✘ ✔ G# ✪, M ✘ ✘

Acar et al. [6] 10/2015 J ✘ ✘ ✘ ✘ ✘ N/A ✘ ✔

Chen et al. [19] ?/2018 J ✘ ✘ ✘ ✔ ✘ N/A ✘ ✘

Meng et al. [57] 08/2017 J ✘ ✘ ✔ ✔ G# ✔ ✘ ✘

Ragkhitwets [61] 01/2016 J ✘ ✔ ✘ ✔ G# ✔ ✪,SI,CC ✔

Bai et al. [11] N/A J ✘ ✘ ✘ ✔ ✘ N/A ✪,M ✔

Bagherzadeh et al. [10] N/A J,S ✘ ✘ ✔ ✔ G# ✔ ✘ ✘

Chen et al. [18] ?/2018 J ✪,M ✘ ✘ ✔ ✘ N/A ✘ ✘

Zhang et al. [85] 10/2016 J ✪,P ✘ ✘ ✔ ✘ ✔ ✔,CC ✘

Rahman et al. [63] 08/2021 J ✘ ✘ ✘ ✔ ✘ ✔ ✔,CC ✔

Reinhardt et al. [64] N/A J ✔ ✘ ✘ ✔ ✘ ✔ ✔,CC ✘

Licorish et al. [49] ?/2016 J ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✘

Schmidt et al. [66] 03/2022 JS,P ✘ ✘ ✔ ✘ H# ✔ ✘ ✘

Yi Liu et al. [51] N/A J ✪,M ✘ ✔ ✘ ✘ ✔ ✘ ✘

Ren et al. [65] 03/2019 J ✪,M ✘ ✔ ✔ ✘ ✔ ✘ ✔

Licorish et al. [50] ?/2016 J ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✘

Rangeet Pan [60] N/A P ✘ ✘ ✔ ✔ ✘ ✔ ✘ ✘

Ye et al. [83] N/A J ✪,M ✘ ✘ ✔ ✘ ✔ ✘ ✘

Chen et al. [17] N/A J ✪,M ✘ ✔ ✔ ✘ ✔ ✔,CX ✔

Zhang et al. [86] N/A P ✘ ✘ ✘ ✔ H# N/A ✘ ✘

Alhanahnah et al. [8] N/A J ✔ ✘ ✔ ✔ H# N/A ✘ ✘

Imai et al. [38] N/A J ✔ ✘ ✘ ✘ ✘ ✪,R ✪,Se ✘

Fischer et al. [26] 03/2018 J ✪,M ✘ ✘ ✔ ✘ N/A ✘ ✔

Almeida et al. [9] N/A JS ✔ ✘ ✘ ✔ ✘ N/A ✘ ✘

Islam et al. [42] N/A P ✘ ✘ ✘ ✔ H# N/A ✘ ✘

Mahajan et al. [54] 03/2019 J ✪,A ✘ ✘ ✔ H# ✔ ✘ ✔

Mahajan et al. [55] 03/2019 J ✔ ✘ ✘ ✔ H# N/A ✘ ✔

Yadavally et al. [82] N/A J,C ✘ ✘ ✘ ✔ H# ✪,S ✘ ✘

Firouzi et al. [24] 09/2018 C# ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✘

Ghanbari et al. [30] 09/2018 P ✪,F ✘ ✘ ✔ ✘ ✔ ✘ ✘

Gao et al. [29] N/A J ✔ ✘ ✘ ✔ ✘ N/A ✘ ✘

M. Chakraborty [16] 01/2021 P ✘ ✘ ✘ ✔ ✘ N/A ✘ ✘

Moghadam et al. [59] N/A J ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✘

Madsen et al. [53] N/A JS ✪,S ✘ ✔ ✔ ✘ ✔ ✘ ✘

Jhoo et al. [46] N/A P ✪,S ✘ ✘ ✔ ✘ ✔ ✘ ✘

D1: J = Java, C = C/C++, JS = JavaScript, P = Python, S = Scala, P = PHP
D2: SM = String matching, M = Machine learning, N = NLP, R = Regular Expression, A = Abstract

Program Graph, P = Pattern Recognition, F = Fault Localization, S = Static analysis
R2: M = Machine Learning, R = Regular Expression, S = Static analysis
R3: S = SourcererCC, SI = Simian, CC = CCFinder, CX = CCFinderX, P = PDG, Se = SeByte, M
= MOSS

do not use those APIs, or a study focusing on the effects
of code revisions might exclude single-version snippets. We
assign ✘ if a study includes all snippets without filtering;
otherwise, we assign ✔.
R1. Artifact Availability: Code and data artifacts are impor-
tant for revisiting and replicating prior findings; here, they
are used to compare results on different versions of Stack
Overflow datasets without undergoing the tedious (and error-
prone) effort of re-implementing prior approaches. If paper
artifacts (either code, data, or both) are unavailable, we assign
✘. We distinguish between artifacts that are fully or partially
available. An artifact is fully functional available (✪) if both
data and code are available and, most importantly, the code
is free of bugs and can be used directly without changes to
the code base. We assign if the code of a fully available
artifact has bugs that require significant effort to fix. An arti-
fact is partially available if only code (H#) or only data (G#) is
available. If the code of a partially available artifact requires
significant bug fixing, we assign #.
R2. Language Detection: The Stack Exchange and SOTor-
rent datasets do not state the programming languages of
code snippets, requiring researchers to determine these. Re-
searchers can rely on other data (✔) like tags of posts, or they
can employ code analysis tools (✪). When a tool is used, we
indicate the underlying technique (e.g., machine learning or
static analysis) used for language detection. If the authors did
not mention their detection technique, we assign N/A.
R3. Code Reuse Detection: Several studies indicate that
developers reuse code from Stack Overflow, sometimes at-
tributing the copied code snippets with their URL [12]. This
criterion differentiates between studies using attribution (✔)
and studies using tools (✪), e.g., clone detection, to identify
code reuse. If a tool is used, we give the name of the tool or
technique. We assign ✘ if code reuse is not considered.
R4. Human-Centered Research: Differentiates human-
centered studies of Stack Overflow data involving software
developers as participants. If the study’s methodology in-
cludes developer participation, we assign ✔; otherwise, we
assign a ✘ for non-user-driven studies.

4 Relevance of Stack Overflow Evolution

Table 1 lists the relevant works from our literature review. Fol-
lowing, we elaborate on the criteria for these papers (D1–D5)
and how these can be affected by content evolution on Stack
Overflow. For space reasons, we restrict our explanations to
the six highlighted studies in Table 1, with explanations of
the remaining studies available in our extended version [45].

The work by Zhang et al. [84] investigated whether code
revisions on Stack Overflow are associated with improving or
worsening the security of code snippets (D3: ✔). The study
focused on C and C++ code snippets (D1: C/C++) with at
least 5 LoC (D5: ✔). The CppCheck static analysis tool was

used to detect security weaknesses (D2: ✔, D4: ✘).
The DICOS tool by Hong et al. [37] analyzes the

change history of C/C++ code snippets (D1: C/C++; D3:
✔) to discover insecure code snippets by looking for
changes in security-sensitive APIs, control flow information,
and/or security-related keywords in the surrounding context
(D2: ✪, N; D4: ✔). However, the authors only considered the
first and last revision of each snippet (D5: ✔).

Fischer et al. [25] investigated the reuse of insecure Java
code snippets in Android apps (D1: Java). They employed a
machine learning classifier to identify snippets with insecure
usage of crypto APIs (D2: ✪, M; D5: ✔). The authors consid-
ered neither code evolution (D3: ✘) nor surrounding context
in their methodology (D4: ✘).

Follow-up work by Fischer et al. [27] relied on flagging
Java snippets with crypto API misuse and suggesting more
secure snippets (D1: Java; D2: ✪, D; D5: ✔). As in their
preceding work, the authors considered neither code evolution
(D3: ✘) nor context in their methodology (D4: ✘).

Rahman et al. [62] analyzed Python code snippets (D1:
Python) to identify insecure coding practices using string
matching (D2: ✪, SM). They focused on snippets from an-
swers attributed in GitHub project (D5: ✔) but did not con-
sider code evolution or context (D3: ✘, D4: ✘).

Campos et al. [22] studied JavaScript code snippets
(D1: JavaScript) to identify rule violations using ESLint, a
JavaScript linter (D2: ✔). They relied exclusively on ESLint
to detect security or code quality issues without considering
the surrounding context (D4: ✘) or the evolution of snippets
(D3: ✘). Further, they focused only on snippets with a mini-
mum of 10 lines of code (D5: ✔).

MQ1: What aspects of Stack Overflow affect the
results of prior research? Criteria D1–D5 in Table 1
show that programming language-specific trends and
evolution may affect the stability of results over time.
Further, most of these works leverage some form of code
classification, making their results susceptible to changes
as the code evolves. Only four works rely upon code
evolution in their methodology, showing that ongoing
evolution beyond the study’s timeframe can influence
their results. Additionally, twelve studies focus on the
context surrounding code snippets, so any changes in
context, like the addition of security-relevant comments,
could also impact their findings.

5 Evolution of Stack Overflow

Based on the identified aspects of Stack Overflow that may af-
fect prior research (MQ1), we now look at the global evolution
of the programming languages and security-relevant contexts
on Stack Overflow. Measuring the security of code snippets

2009 2011 2013 2015 2017 2019 2021

0K

10K

20K

30K

40K

50K

N
ew

 c
od

e
sn

ip
pe

ts
 p

er
 m

on
th

Ja
va

Ja
va

C
/C

++

JS
/C

/C
++

/P
yt

ho
n

C
++

/P
yt

ho
n

C
/C

++

Ja
va

Ja
va

Ja
va

Ja
va

JS
/P

yt
ho

n

Ja
va

P
yt

ho
n

C
C++
Java
JavaScript
Python

Figure 3: Added code snippets on Stack Overflow per month.
Dashed lines indicate data collection points of snippets by the
works in our systematization (if known; see Table 1).

2010 2012 2014 2016 2018 2020 2022

10
3

10
4

10
5

N
r.

of
 p

os
t e

di
ts

 /
m

on
th

No commit message Not Security-Relevant Security-Relevant

Figure 4: Number of monthly (30-day interval) post edits
categorized by their security relevance.

directly, however, is a challenging task and requires dedicated
methodologies (e.g., [25, 27, 37, 84]). We address the evolu-
tion of code snippet security through case studies in §6 and
focus here on programming languages and security-relevant
edits and comments.

Programming Languages Figure 3 depicts the monthly
addition of new code snippets in the most considered pro-
gramming languages in the works from Table 1. The data
shows that while C/C++ is relatively stable over time but at a
comparatively low rate, Java and JavaScript peaked between
2013 and 2018 and have been shrinking on Stack Overflow
since 2018. We indicate with dashed lines when the papers
from our systematization sampled their data (if known).

Security-Relevant Edits and Comments We found that the
average code snippet on Stack Overflow receives 1.66 edits
(max = 754, P75 = 2, P99 = 6). A breakdown of average code
snippet edits per language is provided in the extended version
of this paper [45]. Figure 4 shows the number of monthly post
edits on Stack Overflow between 09/2008–06/2022, broken
down by their security relevance and commit message. To
identify security-relevant edits, we apply the publicly shared
NLP-based classifier by Jallow et al. [1, 43] on the commit
messages of the edits. We found 9,443,509 code edits without
a commit message, 3,731,935 non-security-relevant commit
messages, and 549,863 commit messages indicating security
relevance. Our data shows that 514,666 answer posts have

2010 2012 2014 2016 2018 2020 2022
3%

4%

5%

6%

7%

P
C
S
Al
l

(a) Including empty commit messages.

2010 2012 2014 2016 2018 2020 2022

12%

14%

16%

P
C
S
N
on

Em
pt
y

(b) Excluding empty commit messages.

Figure 5: Percentage of security-relevant commits (PSC) in
monthly intervals. Dashed lines are fitted linear regressions.

received at least one security-relevant commit (max = 27). We
calculate the percentage of security-relevant commits (PSC):

PSC =
Number of security-relevant commits∗100

Total number of commits

On June 20, 2020, Stack Overflow changed to Common-
Mark [79] and adjusted all 338,622 nonconforming posts
with automated edits. For data sanity, we exclude these script-
generated edits from the PSC calculation.

Figure 5 depicts the PSC for all code edits on Stack
Overflow, where Figure 5a counts empty commit messages
to the total number of commits and Figure 5b excludes
them. The monthly average PSC is PSCAll= 4.2% ± 0.1
and PSCNonEmpty= 13.1% ± 0.2 (CI = 95%). We use the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [48] to test
for stationarity of the PSC over the long term. Since KPSS
is known to exhibit a high rate of Type-I errors, indicating
non-stationary too often, we also test the PSC’s non-stationary
with the Augmented Dickey Fuller (ADF) test [28]. Our ex-
tended version [45] details the results and illustrates the cor-
responding PSC. In summary, when focusing on non-empty
commit messages, we find that the overall PSC is trend sta-
tionary (KPSS p > 0.05; ADF p > 0.05), the PSC for C
code snippets is difference stationary (KPSS p > 0.05; ADF
p < 0.001) with an increasing PSC (i.e., the difference be-
tween data points is stationary and the PSC has a linear up-
ward trend over time), and the PSC for JavaScript snippets is
non-stationary (KPSS p < 0.05; ADF p > 0.05). All but C++
and Python edits show a stationary PSC when considering
non-empty commit messages.

Regarding comments, we found that 3,991,533 (8.1%)
of 49,087,103 comments were security-relevant. These rel-
evant comments are for 3,128,208 posts, of which 98,139
also received a security-relevant commit message. The mean
percentage of security-relevant comments PSCComments is

7.78±0.143, where posts with C/C++ snippets have a sig-
nificantly higher mean PSCComments between 11–12% (refer
to [45] for further details). Further, KPSS and ADF tests
show that the overall PSCComments is difference stationary
and that the PSCComments for C/C++, Java, JavaScript, and
Python posts is non-stationary (refer to [45] for further de-
tails). A fitted linear regression confirms this increasing trend
of PSCComments (R2 = 0.93, p < 0.001 for all comments). A
potential explanation for this development could be the de-
creasing number of new code snippets (e.g., because simple
questions are now posted to GenAI tools) and a continued
community effort to curate the Stack Overflow content.

MQ2: How much do Stack Overflow code snippets
and surrounding context evolve? Our data shows that
programming languages trend differently in their over-
all number of added snippets and their ratio of security-
relevant edits. Thus, studies focusing on particular lan-
guages will likely find a different landscape when con-
ducted at different times. Further, many comments raised
security-relevant issues but were largely not on posts that
received a security-relevant edit. Over time, the ratio of
security-relevant comments steadily increased, indicating
that the community strives to improve content quality.

6 Replication Case Studies

We present replication case studies to answer MQ3 whether
the findings of prior research relying on specific versions
of the Stack Overflow dataset change due to evolution. In
contrast to §4 and §5, we aim to find concrete evidence for the
impact of Stack Overflow evolution on research results. We
detail four replication case studies [22, 37, 62, 84] and present
two more [25, 27] in our extended version [45].

Excluded papers. As shown in Table 1, we focused on six
papers for replication and excluded the others. In 16 stud-
ies [10, 11, 16, 24, 42, 59, 60, 63, 66, 82, 86], the detection of
security weaknesses and bugs in code snippets was not auto-
mated; instead, these studies relied on manual processes to
label and identify security issues and/or bugs in code snippets.
This approach typically involved human annotators review-
ing and classifying the code for potential weaknesses, which
is hard to compare in a replication study with different hu-
man evaluators. On the other hand, three studies [17, 26, 65]
leveraged machine learning techniques to automate the detec-
tion of security vulnerabilities in code snippets. While these
studies employed advanced algorithms to facilitate automated
analysis, they failed to release the underlying source code
and datasets, particularly the training data used for training
their models, making replication hard. Additionally, nine stud-
ies [8,9,18,29,46,51,53,64,83] did not specify which version

Table 2: Results by Zhang et al. (cf. Table 1 in [84]) versus our replication study using SOTorrent22 and Cppcheck v2.13.

Based on SOTorrent18 (Original) Based on SOTorrent22 (Replication)
Answer # Code Snippet # Code Version # Answer # Code Snippet # Code Version #

SOTorrent 867,734 1,561,550 1,833,449 SOTorrent 1,096,380 1,944,378 2,340,975
LOC >= 5 527,932 724,784 919,947 LOC >= 5 695,326 938,643 1,234,443
Guesslang 490,778 646,716 826,520 Cppcheck 2.13 323,321 388,749 507,997
Codew 11,235 11,748 14,934 Codew 28,521 30,254 38,248

of the dataset they used to collect code snippets from Stack
Overflow. Lastly, nine studies [6, 11, 17, 26, 54, 55, 61, 63, 65]
were excluded in favor of non-user-driven studies.

Datasets The selected papers investigated two kinds of
Stack Overflow datasets. First, Fischer et al. [25, 27] used
the official data dump provided by Stack Exchange, Inc [71].
Here, we perform a replication study using the September
2023 version (denoted StackExchange23). Second, Zhang et
al. [84], Hong et al. [37], Campos et al. [22] and Rahman et
al. [62] used the SOTorrent dataset by Baltes et al. [13]. Here,
we perform a replication study using a newer dataset version.
The authors of the SOTorrent dataset stopped providing new
releases in December 2020. Fortunately, the tool used to make
new releases of the dataset is open-source [67], allowing us
to create a new release of SOTorrent (denoted SOTorrent22)
based on the June 2022 version of the Stack Exchange dataset.

Notation Colored text is used to distinguish between results
from the original studies and those from our replication.

6.1 Case Study 1: C/C++ Code Weaknesses
Zhang et al. [84] studied whether revisions to C/C++ snippets
increase or decrease the snippets’ security. Their work ad-
dressed the following questions: RQ1: What are the types of
code weaknesses that are detected in C/C++ code snippets on
Stack Overflow? RQ2: How do code with weaknesses evolve
through revisions? RQ3: What are the characteristics of the
users who contributed code with weaknesses?

6.1.1 Original Methodology

The authors employed a data-driven approach (R4: ✘), focus-
ing exclusively on answer posts from the SOTorrent18 dataset
(released in 12/2018), without considering code reused from
Stack Overflow (R3: ✘). The left-hand side of Table 2 shows
the originally collected data. The authors extracted 867,734
answers containing 1,561,550 code snippets with C/C++ tags
with 1,833,449 versions. From this data set, they filtered all
snippets with less than five LoC. This resulted in 724,784 code
snippets (with 919,947 versions) from 527,932 answers. How-
ever, the authors noticed that using tags alone is insufficient
to determine the language of code snippets, i.e., not all snip-
pets contain valid C/C++ code. Using the Guesslang machine

SOTorrent18 LoC Filter Guesslang Cppcheck CodeW

SOTorrent22 LoC Filter Cppcheck CodeW

Figure 6: Comparison of Zhang et al.’s [84] methodology
with the approach used in our replication study.

learning classifier [31] they filtered non-C/C++ code snippets
(R2: ✪, M). This resulted in 646,716 code snippets (having
826,520 versions) from 490,778 answers. In a final step, the
authors leveraged the CppCheck static analysis tool to scan all
826,520 versions to detect security weaknesses. We reuse the
terms by the authors to denote code snippets, snippet versions,
and answers with security weaknesses as Codew, Versionw,
and Answerw, respectively. The authors’ final dataset to an-
swer their research questions are Versionw = 14,934 from
Codew = 11,748 in Answerw = 11,235.

6.1.2 Re-Implementation

The authors did not publicly release their source and data
artifacts (R1: ✘) but provided us on request with a CSV file of
the Answerw = 11,235. The unavailability of the code artifact
forced us to re-implement their methodology for replication.

An exact re-implementation of Zhang et al.’s [84] method-
ology was impossible. The Guesslang version used by the
authors is outdated and unavailable. Replacing the old ver-
sion with the newest version, v2.2.1, yielded significantly
different numbers for the same SOTorrent18 data set (490,778
vs.249,451). Additionally, we noticed that Guesslang v2.2.1
misclassified 4,901 C/C++ answers (out of Answerw =
11,235) from the authors’ results as Java. Given the sub-
stantial differences of Guesslang v2.2.1, we devised an al-
ternative methodology that skips Guesslang (see Figure 6).
We relied solely on Cppcheck to identify valid C/C++ snip-
pets and detect security weaknesses. Cppcheck attempts to
compile code snippets, failing if the snippets are not valid
C/C++ code. Thus, Cppcheck formed an additional language
detection step in the original methodology, which is now the
only such step. The intuition is that any invalid C/C++ code
detected by Guesslang would be rejected by Cppcheck.

A second challenge for re-implementation was that the au-
thors did not specify the exact Cppcheck version used in their
study and did not respond to multiple inquiries. Ultimately,
we resorted to brute force by testing 15 different versions of
Cppcheck on the provided Answerw list against the reported

Table 3: Side-by-side summary of the main claims in Zhang et al.’s paper [84] for RQ1 and RQ2 and claims based on the results
of our replication using SOTorrent22.

Original Results Based on SOTorrent18 Replication Results Based on SOTorrent22
RQ1 What are the types of code weaknesses that are detected in C/C++ code snippets on Stack Overflow?

The authors found 36% (i.e., 32 out of 89) of all the C/C++ CWE types in
C/C++ code snippets on Stack Overflow.

We found 37% (i.e., 33 out of 89) of all the C/C++ CWE types in C/C++
code snippets on SO. CWE-476 is a newly introduced type for snippets
after December 2018 and has 1,159 instances.

The authors identified 12,998 CWE instances within the latest versions of
the 7,481 answers.

We identified 7,679 CWE instances within the latest versions of the 5,721
answers.

The authors found CWE-758 to be the sixth most prevalent CWE type in
C/C++ code snippets with 482 (3.7%) instances.

We found CWE-758 to be the second most prevalent CWE type in C/C++
code snippets with 10,911 instances.

The authors found 10,533 CWE instances in the TOP-6 most prevalent CWE
types affecting C/C++ code snippets on SO.

While we found 42,984 CWE instances in the TOP-6 most prevalent CWE
types affecting C/C++ code snippets on SO.

RQ2 How does code with weaknesses evolve through revisions?
As the number of revisions increases from one to ≥ 3, the proportion of
improved Codew increases from 30.1% to 41.8%.

As the number of revisions increases from one to ≥ 3, the proportion of
improved Codew increases from 3.1% to 7.4%.

In Codew with different rounds of revisions, a larger proportion of code snip-
pets have reduced rather than increased the number of security weaknesses.

We observed a smaller proportion of code snippets whose associated security
weaknesses reduced with different rounds of code revisions.

The authors found 92.6% (i.e., 10,884) of the 11,748 Codew had weaknesses
introduced when their code snippets were initially created on Stack Overflow.
They found 10,884 Codew introduced in the snippets’ first version.

We found 93.1% (i.e., 28,155) of the 30,254 Codew had weaknesses in-
troduced in their first version. However, we discovered significantly more
Codew introduced when code snippets were initially created: 28,155.

69% (i.e., 8,103 out of 11,748) of the Codew has never been revised. 80.6% (i.e., 24,388 out of 30,254) of Codew has never been revised.

results in the paper. We found version v1.86 to be closest to
the original results. This version detected Answerw = 15,724,
of which 11,142 (99.2% of 11,235) were also identified by the
authors. We surmise the additional 4,489 answers result from
erroneous filtering with Guesslang in the original approach.

We evaluated our re-implementation with the SOTorrent18
data set that was also used by the authors, aiming to verify
that our approach is within an acceptable error margin from
the authors’ results and allowing us to replicate their study
with a newer data set faithfully. Table 6 in Appendix A com-
pares with the original findings and shows that our approach
resembles the original methodology closely enough.

6.1.3 Replication

We replicate their findings using SOTorrent22, released four
years after the original dataset. We use Cppcheck v2.13 to
show how the results would differ if the study were conceived
years later. Table 8 in Appendix A shows results for different
combinations of Cppcheck and SOTorrent versions.

Table 2 compares the original results with the replication
based on SOTorrent22 and Cppcheck v2.13. We found that the
number of code snippets with LoC >= 5 increased between
2018 and 2022 (724,784 ↗ 938,643), a growth rate of 29.5%.
Among these, the Codew also increased (11,748 ↗ 30,254),
a growth rate of 157.5%.

Table 3 presents a side-by-side comparison of the authors’
claims and our findings based on the newer dataset for the au-
thors’ RQ1 and RQ2. Below, we summarize the main points.

Revisiting RQ1 Findings: We found that an additional
CWE type (CWE-476) has appeared since December 2018,
which is now the sixth most prevalent CWE type. Similarly,
the authors identified 12,998 CWE instances in the latest

versions of 7,481 answers, whereas we found 7,679 instances
in 5,721 answers. Further, we noticed a shift in the ranking
of CWE types: CWE-758 climbed 6th ↗ 2nd; CWE-401
dropped 2nd ↘ 3rd; CWE-775 fell 3rd ↘ 7th.

We found that several of Zhang et al.’s [84] original
conclusions regarding the types of code weaknesses are
no longer valid. SOTorrent22 contains proportionally
more vulnerable snippets with different ratios for CWE
types and the emergence of a new CWE type.

Revisiting RQ2 Findings: The authors noted that as the
number of revisions to Codew increased from 1 to 3+, the
proportion of improved Codew rose from 30.1% to 41.8%
(see Table 7 in Appendix A). As a result, the authors con-
cluded that a larger proportion of Codew has reduced rather
than increased, indicating that revisions improve code security.
In contrast, our results showed significantly lower improve-
ment rates. As revisions increased from 1 to 3 or more, the
proportion of improved Codew only rose from 3.1% to 7.4%.

Our replication shows that if the authors had conducted
their study 4 years later, they would have observed only
a slight increase in the proportion of improved Codew.

Revisiting RQ3 Findings: The authors found that “the
majority of the C/C++ Versionw were contributed by a small
number of users” and that “72.4 percent (i.e., 10,652) of
Versionw were posted by 36 percent (i.e., 2,292) of users.”
In our replication, we found a shift where an even smaller
number of users contributed Versionw, see Figure 7. We found
that 72.4 percent (i.e., 35,034) of Versionw were posted by
25 percent (i.e., 3,205) of users. In our data set, 36 percent

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Users

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
. p

ro
po

rti
on

 o
f c

od
e

ve
rs

io
ns

0.25

0.724

0.36

0.795

Code versions with weaknesses

Figure 7: The accumulative proportion of Versionw posted
by the proportion of users. Annotations indicate the original
(cf. Figure 9 in [84]) and replicated significant data points.

1 10 100 1,000 10,000
Number of code revisions

1.000

0.100

0.010

0.001

De
ns

ity
 o

f c
od

e
wi

th
 w

ea
kn

es
s Count

1

10

100

1000

Figure 8: As the number of code revisions increases for a user,
the density of contributed Versionw by that user drops. Based
on data from replication study. (cf. Figure 10 in [84])

(i.e., 4,625) of users contributed 79.5 percent (i.e., 38,481)
of the Versionw. Moreover, Zhang et al. reported that “64.0
percent (i.e., 4,070) of the users who contribute Versionw have
contributed only one Versionw.” We found that 86.2 percent
(i.e., 11,077) of users contributed only one Versionw. Further,
they reported that “among all the 85,165 users who posted
C/C++ code snippets, only 7.5 percent (i.e., 6,361) of them
posted code snippets that have weaknesses.” In contrast, in
our replication study, 17.0 percent (i.e., 12,845) of 75,779
users contributed code snippets with weaknesses.

Next, Zhang et al. explored the connection between user
activity and code weaknesses. They found that “more active
users are less likely to introduce Codew.” We depict the same
connection in Figure 8, adopting the authors’ plot style. The
authors concluded that “the weakness density of a user’s code
drops when the number of contributed code revisions by the
user increases.” We explored the relation between the num-
ber of code revisions and the density of contributed Versionw
by users with statistical testing. A Pearson correlation anal-
ysis revealed a weak correlation, r(4) =−0.190, p < 0.001,

suggesting that as the number of revisions increases, the den-
sity of code with weaknesses decreases slightly. A linear
regression analysis was conducted to examine further the
relationship between the number of revisions (independent
variable) and the weakness density (dependent variable). The
results indicated that the model was statistically significant
F(1,12843) = 478.4, p < 0.001, suggesting a significant in-
verse association of code revision count with weakness den-
sity. However, the model explained only a small proportion of
the variance in weakness density R2 = 0.036. These findings
suggest that the weakness density is expected to decrease
by 0.0005 for each additional revision. However, the low R2

value indicates that the number of revisions explains only
3.6% of the variability in weakness density, suggesting that
other factors may also play a significant role. Overall, the cor-
relation and regression analyses support the conclusion that
there is a statistically significant but weak inverse relation-
ship between the number of revisions and weakness density.
Further research is needed to explore additional variables and
potential non-linear relationships that might better explain the
variability in weakness density.

Additional details on the replication results for Zhang et
al.’s RQ3 and a note about a possible multiplicity in counting
CWE instances can be found in our extended version [45].

We found that the fraction of users with vulnerable C/C++
snippets more than doubled compared to the original
findings. Moreover, the number of users that contributed
just one vulnerable snippet also increased. Further, the
authors reported that users who contributed multiple vul-
nerable snippet versions repeatedly contributed the same
CWE type. We found that these users contribute different
types of CWE with the same likelihood.

6.2 Case Study 2: Discovering Insecure Code
Hong et al. [37] built DICOS to discover insecure code snip-
pets by examining snippet revisions for changes in security-
sensitive APIs, security-related keywords, and control flows.
A code snippet is classified as insecure if at least two types
of changes (see §3 in [37]) occurred between its initial and
most recent version. The authors used tags to identify the
programming language of code snippets (R2: ✔). Although
the DICOS source code is available on GitHub [36], it con-
tains several bugs that required fixing. Further, their dataset
of labeled snippets is not available, even on request (R1: #).

The authors followed a data-driven approach (R4: ✘) to
answer: RQ1 Are older posts more likely to provide insecure
code snippets? RQ2 Are accepted answer posts more secure
than non-accepted posts? RQ3 What types of insecure code
snippets were discovered? RQ4 What is the status of reusing
insecure code snippets in popular open-source software?

We replicate the study for RQ2 and RQ3 to determine if
their results still hold today. We excluded RQ1 because code

evolution does not affect its findings, i.e., code evolution can-
not retroactively add old posts, only evolve them. However,
we used the results of RQ1 to evaluate the released DICOS
tool, which we will discuss later in this section. We excluded
RQ4 because it deals with code reuse from Stack Overflow
in open-source projects on GitHub (R3: ✪, S). Though RQ4
is an interesting question for replication, our focus is on code
evolution within Stack Overflow.

6.2.1 Original Methodology

The authors reported 93% precision, 94% recall, and 90%
accuracy in discovering insecure C/C++ code snippets with
DICOS while for Android code snippets, it has 86% precision,
89% recall, and 86% accuracy. The evaluation was done using
the SOTorrent20 dataset, released in 12/2020, from which they
extracted 668,520 posts containing 1,514,547 code snippets.
For replication, we need to re-evaluate DICOS’s precision, re-
call, and accuracy using the more recent SOTorrent22 dataset.
The authors evaluated the accuracy of DICOS against the re-
sults by Fischer et al. [25] and Verdi et al. [78]. However,
this methodology creates a barrier to replication: the authors
only used the datasets provided by Fischer et al. and Verdi et
al. rather than directly running DICOS and these tools on the
same input. Specifically, they compared the insecure snippets
identified by DICOS against the labeled code snippets from
Fischer et al. and the insecure C++ snippets found by Verdi
et al. To replicate this experiment, we would need to follow
the same approach, using the labeled examples from related
work to compare with DICOS’s findings on a newer version
of SOTorrent. Unfortunately, since these tools are unavailable
and the labeled data from Fischer et al. and Verdi et al. only
represent the old SOTorrent data set, this evaluation approach
is infeasible when using a newer SOTorrent version.

6.2.2 Implementation

We used the DICOS code base to replicate the authors’ find-
ings on a newer dataset. We discovered several bugs, which
we fixed for future use with DICOS, and noticed that some
methods were only partially implemented. For example, Jo-
ern [3] was not fully used for control flow analysis, and their
Jaccard index-based pairing technique produced many false
positives. We plan to release a refactored DICOS version with
the option to use clone detection as a pairing technique.

We evaluated the authors’ DICOS implementation using
the same dataset version to verify that we have a reproducible
methodology as the basis for replication. However, we could
not reproduce their reported Stack Overflow post counts us-
ing the same SQL queries [35]. While they reported 987,367
C/C++ and 970,916 Android posts, we found 867,962 C/C++
and 986,900 Android posts. Additionally, we identified 26,550
insecure posts, 14,092 more than the 12,458 reported. Un-
fortunately, we received no response from the authors for

clarification. We did replicate their RQ1 findings, observing
a similar trend but with different yearly secure/insecure post
counts. Details are in Appendix B. Although we could not
reproduce the exact insecure post numbers, we replicated their
study on a newer SOTorrent dataset version, using their code.

6.2.3 Replication

We used SOTorrent22, which was released two years after the
SOTorrent20 dataset used by the authors. We followed the
authors’ approach to collect posts from SOTorrent22. The au-
thors extracted 1,958,283 posts (987,367 C/C++ and 970,916
Android), whereas we extracted 2,858,003 posts (1,489,148
C/C++ and 1,368,855 Android posts). This indicates a 51%
increase in C/C++ posts and a 41% increase in Android
posts since December 2020. The authors filtered all single-
version posts, resulting in 668,520 (34% of 1,958,283) multi-
version posts. After filtering all single-version posts from the
extracted SOTorrent22 posts, we obtained 1,046,052 posts
(36.6% of 2,858,003) with at least two versions.

Finally, the authors applied DICOS on their dataset of
668,520 posts and discovered 12,458 (1.9%) insecure posts
(8,941 C/C++ and 3,517 Android). Of these, 788 (6.3%) inse-
cure posts contained all three types of changes while the re-
maining 11,670 insecure posts contained two types of changes.
Using the same approach on our dataset of 1,046,052 posts,
we discovered 30,359 (2.9%) insecure posts, i.e., an increase
of 52%. Among these, 4,887 (16.1%) insecure posts con-
tained all three features, i.e., an increase of 155%, while the
remaining 25,472 posts contained two features.

Accuracy of DICOS: To compute the accuracy, the authors
manually verified a subset of the 12,458 discovered insecure
posts using the following groups: G1. All posts with three
changes G2. Top 200 posts with two changes G3. Randomly
selected 100 posts with two changes G4. Top 200 posts with
only one change G5. Top 100 posts without changes

Groups G1–G3 were used to measure true and false pos-
itive rates for detecting insecure posts. Groups G4 and G5
were used to measure the true and false negative rates. Two
researchers manually verified the posts for each group, record-
ing the positive and negative rates for C/C++ and Android.
We replicated this approach to calculate the precision, recall,
and accuracy of DICOS using SOTorrent22. We adhered to
the authors’ original method, verifying 788 insecure posts for
G1 by randomly selecting 788 posts for manual verification
by two researchers. For G3, we faced the challenge that the
authors conducted a one-time random selection of 100 posts
with two features. In contrast, we performed three random
selections of 100 posts and averaged the results.

Table 4 compares the original accuracy of DICOS reported
by the authors with our findings using a newer dataset. We
found that DICOS had an 11% precision (compared to the
authors’ 91%), 32% accuracy (versus 89%), and an 87% recall
(versus 93%). These results indicate that the performance of

Table 4: Comparison of precision, recall, and accuracy measured by authors (Table 5 in [37]) vs. our replication (SOTorrent22).

Original accuracy measurement results based on SOTorrent20 Replicated accuracy measurement results based on SOTorrent22
ID #Posts #TP #FP #TN #FN #Posts #TP #FP #TN #FN
G1 788 757 31 N/A N/A 788 95 693 N/A N/A
G2 400 346 54 N/A N/A 400 33 367 N/A N/A
G3 200 162 38 N/A N/A 600 66 534 N/A N/A
G4 400 N/A N/A 318 82 400 N/A N/A 379 17
G5 200 N/A N/A 185 15 200 N/A N/A 188 12

Total 1,988 1,265 123 503 97 2,388 194 1,594 567 29
Precision 0.91 0.11
Recall 0.93 0.87
Accuracy 0.89 0.32

DICOS has significantly decreased due to the code evolution
on Stack Overflow. The replicated accuracy measurements
for C/C++ and Android are in Appendix B.

We found that code evolution has adversely affected the
precision and accuracy of DICOS’s approach to detecting
vulnerable snippets. Considering the stable recall, DICOS
on newer Stack Overflow versions is better suited for
detecting secure snippets.

Revisiting RQ2 Findings: The authors investigated the
relationship between the security weaknesses of code snippets
in accepted and non-accepted answers and found no difference
between the ratios of insecure posts for accepted (1.67%) and
non-accepted (1.99%) answers. Using the newer version of
the SOTorrent dataset, we observed a higher ratio of insecure
posts between accepted (7.72%) and non-accepted (6.61%)
answers. Figure 10 in Appendix B compares the original and
replication results. A two-sample z-test for proportions of
the insecure to secure posts ratio between the original and
our replication results shows a significant difference (Z =
−126.888, p < 0.001).

Revisiting RQ3 Findings: The authors manually catego-
rized the 788 insecure posts containing all three types of
changes by their weakness types. Figure 11 in Appendix B
compares the original and replication results. The authors
reported eight types of insecure code snippets, with unde-
fined behavior (42%) being the most common. Our findings
indicate that memory leaks (39.3%) are now the most preva-
lent security weakness in C/C++ code snippets. Furthermore,
while the authors identified null-terminated strings as the
second most common issue, our analysis found undefined
behavior, out-of-bound errors, and others instead.

For the newer data set version, the types of weaknesses
and their frequencies have shifted.

6.3 Case Study 3: Snakes in Paradies
Rahman et al. [62] investigated Python code snippets with
the aim of characterizing the prevalence of insecure Python-
related coding practices. The authors used the SOTorrent18

dataset, released in 09/2018, to empirically answer the fol-
lowing research questions: RQ1: How frequently do insecure
coding practices appear in Python-related Stack Overflow
answers? RQ2: How does user reputation relate to the fre-
quency of insecure Python-related coding practices? RQ3:
What are the characteristics of Python-related questions that
include answers with insecure code practices?

The authors did not investigate the reuse of Python snippets
from Stack Overflow (R3: ✘) and followed a purely data-
driven approach to answer their research questions (R4: ✘).

6.3.1 Original Methodology

The authors focused on Python code snippets in answer posts
belonging to question posts that were viewed more than once
and with a score >0 and that were attributed inside Python
source files on GitHub. Attribution of question posts in Python
projects was used to determine the language of snippets (R2:
✔). This resulted in 10,861 questions with 44,966 answers,
from which they extracted 529,054 code snippets forming
their final dataset. To detect insecure coding patterns, the
authors used string matching to determine if a standard library
or third-party Python API, known to be used in an insecure
way, is found in a code snippet. The authors grouped the
insecure Python APIs they considered in their study into six
categories. Table II in the original paper describes them and
their corresponding insecure coding patterns.

6.3.2 Implementation

The authors published their code artifacts but not their data
artifacts (R1: H#). We used the published code [2] for repli-
cation and collected our dataset from SOTorrent22. The data
collection was straightforward since the authors extensively
described their data collection approach. We tested our imple-
mentation with the data set the authors used (SOTorrent18)
and came to the same numbers as in the original paper.

6.3.3 Replication

We replicated their findings using SOTorrent22, released four
years after the original dataset version. After applying the au-

Table 5: Comparison of the results by Hong et al. [37] and our replication using SOTorrent22.

DICOS with SOTorrent20 DICOS with SOTorrent22
Data Collection

The authors extracted 987,367 C/C++ posts and 970,916 Android posts,
totaling 1,958,283 answer posts.

We extracted 1,460,627 C/C++ posts and 1,339,692 Android posts, totaling
2,800,319 answer posts. This is a 43% increase in the number of C/C++ and
Android answer posts created on Stack Overflow after December 2020.

After filtering out single-version posts, the authors collected 668,520 multi-
version answers, which they used to evaluate DICOS.

We collected 1,046,052 multi-version answers after filtering out single-
version posts.

The authors found 12,458 insecure posts; 8,941 insecure C/C++ posts, and
3,517 insecure Android posts.

In contrast, we found 30,359 insecure posts; 22,167 insecure C/C++ posts
and 8,192 insecure Android posts.

DICOS has 91% precision, 93% recall, and 89% accuracy. We observed 11% precision, 87% recall and 32% accuracy.
RQ2 Are accepted answer posts more secure than non-accepted posts?

The ratio of insecure posts was almost the same between accepted (1.67%)
and non-accepted (1.99%) posts.

The ratio of insecure posts is very similar between accepted (7.72%) and
non-accepted (6.61%) posts, and the overall ratio of insecure posts increased.

RQ3 What types of insecure code snippets were discovered?
The most prevalent type of insecure code snippets was undefined behavior,
accounting for 42% of the total;

The most prevalent type of insecure code snippets was memory leak, account-
ing for 39.25% of the total;

Authors observed Null-terminated string issue as the second most prevalent
security weakness.

In contrast, we found three security weaknesses as the second most prevalent
weaknesses: Undefined behavior, Out-of-bounds error, and Others.

thors’ filtering criteria, we obtained 12,095 questions contain-
ing 72,202 answers, of which 10,140 were accepted answers.
This means the number of code snippets matching the authors’
filtering criteria has dropped since 2018: 529,054 ↘ 239,575.

Revisiting RQ1 Findings: Our findings regarding the num-
ber of questions with at least one insecure answer differ sig-
nificantly: 18.1% (out of 10,861) dropped to 4.9% (out of
12,095). Similarly, the percentage of accepted answers con-
taining at least one insecure snippet also decreased: 9.8%
(out of 7,444) ↘ 2.2% (out of 10,139). Although the vulner-
ability rankings from the original study remain unchanged,
we observed a shift in the number of affected snippets: code
injection increased (2,319 ↗ 5,734), while insecure cipher
(564 ↘ 356), insecure connection (624 ↘ 276), and data se-
rialization (153 ↘ 140) all dropped. Like the original study,
no snippets were impacted by XSS vulnerabilities.

We found fewer insecure and accepted answers than the
original, with percentages dropping significantly. Vul-
nerability rankings remained consistent, but there were
notable shifts in affected snippets, including an increase
in code injection cases and decreases in others. No XSS
vulnerabilities were found, as in the original study.

Revisiting RQ2 Findings: The authors answered this ques-
tion by comparing the normalized reputation score of users
that contributed at least one insecure code snippet with those
that contributed answers with no insecure code snippets. Nor-
malization was required to reduce bias since long-time Stack
Overflow users tend to have higher reputations. Using Mann-
Whitney U and Cliff’s Delta, the authors found no significant
difference between answer providers with high and low repu-
tations, suggesting that both are equally likely to introduce in-
secure code snippets. We also found no significant difference
between the two user groups. However, we observed different
p−value (0.9 ↗ 6.2) and Cliff’s delta (0.01 ↗ 0.03) values.

Revisiting RQ3 Findings: The authors employed Latent
Dirichlet Allocation topic modeling to group questions with
an insecure answer. They found that answers to questions
about web, string, and RNG topics contain at least one in-
secure code snippet. In contrast, we found that answers to
questions related to web topics are no longer associated with
insecure code snippets but questions about string and RNG
topics still have answers containing insecure code snippets.

We found that user reputation still does not influence the
likelihood of posting insecure code snippets. However,
we discovered that the association between web topics
and insecure code snippets is no longer given.

6.4 Case Study 4: Mining Rule Violations

Campos et al. [22] investigated JavaScript code snippets on
Stack Overflow to answer: RQ1: How commonplace are rule
violations in JavaScript code snippets? RQ2: What are the
most common rules violated in JavaScript code snippets?
RQ3: Are JavaScript code snippets flagged with possible er-
rors being reused in GitHub projects? We replicated the study
for RQ1 and RQ2. We omitted RQ3 because it concerns code
reuse from Stack Overflow while we focus on its evolution.

6.4.1 Original Methodology

The authors used a data-driven approach (R4: ✘) and focused
on accepted answers with JavaScript tags (R2: ✔) in the SO-
Torrent18 dataset. The latest version is selected if a code
snippet has multiple versions, resulting in 336,643 code snip-
pets. Using the ESLint analysis tool, the authors found that
all code snippets contain rule violations, with stylistic issues
being the most prevalent violation, accounting for 82.9%.

6.4.2 Implementation

The authors made their source code and data publicly avail-
able (R1: ✪), enabling us to replicate their findings on a
newer dataset. However, we found a discrepancy between
their paper’s data collection method and the released dataset.
Although the paper explained discarding snippets with fewer
than 10 LoC, their dataset includes 42,158 snippets with nine
LoC. Since the script for data collection was not shared, repro-
ducing the exact number of code snippets from SOTorrent18
using the original approach was impossible. Similarly, when
we attempted to reproduce the author’s findings for their RQ1
using their artifacts, we could not come to their conclusion
that no code snippet in their dataset was free of violations.
Instead, we found 153,159 (45.5% of 336,643) snippets con-
taining only parse errors but no rule violations. We contacted
the authors for clarification and learned they chose a mini-
mum LoC of nine and included parse errors as violations. In
our replication study, we followed their clarification.

6.4.3 Replication

We replicated RQ1 and RQ2 using SOTorrent22, released
four years after the dataset version used in their study.

Revisiting RQ1 Findings: The original study reported that
no JavaScript code snippet was free of violations, but our repli-
cation found nine snippets without any violations. However,
the number of violations in JavaScript code snippets increased
from 5,587,357 to 7,385,044, with the average violations per
snippet rising from 11.94 to 28.8.

The observation that no JavaScript code snippet on Stack
Overflow is violation-free no longer holds, and we found
more violations in snippets than originally reported.

Revisiting RQ2 Findings: The original study grouped vi-
olations into six categories and reported the top three most
common rule violations for each category:

Stylistic Issues: Violations increased by 28.4% (4,632,348
↗ 5,946,283), with the three most common violations in this
category being: (1) semi: 1,477,808 ↗ 1,990,461, (2) quotes:
700,770 ↗ 1,072,468, and (3) no-trailing-spaces: 374,012 to
473,294. The authors removed 3,461,739 violations related
to indentation rule violations, reasoning that multiple snippets
were merged into a single file. We followed the same approach
and removed 4,910,529 indentation violations.

Variable: Violations increased by 28.7% (787,824 ↗
1,013,612), with the top issues being: (1) no-undef : 719,679
↗ 913,103, (2) no-unused-vars: 67,816 ↗ 100,124, and
(3) no-undef-init: 150 ↗ 189.

Best Practices (BP): Violations increased by 216.5% (57,578
↗ 182,232), with the most common being: (1) eqeqeq: 53,321

↗ 66,664, (2) no-multi-spaces: 54,768 ↗ 50,352, (3) no-
redeclare: 18624, and (4) curly: 14,989 ↗ 18,292. eqeqeq is
now the most common, while curly dropped to fourth place.

Possible Errors (PE): Violations increased by 39% (6,303
↗ 8,762), with the most common being: (1) no-irregular-
whitespace: 2,037 ↗ 2,196, (2) no-cond-assign: 910 ↗ 1,196,
and (3) no-dupe-keys: 2070, which replaced no-unreachable
as the third most common violation.

Node.js/Common.js: Violations increased by 27.5% (3,304
↗ 4,211), with the most common violations being: (1) handle-
callback-err: 2,855 ↗ 3,650, (2) no-path-concat: 444 ↗ 555,
and (3) no-new-require: 5 ↗ 6.

ECMAscript 6: Violations increased by 139.8% (from 548
to 1,314), with the most common being: (1) template-curly-
spacing: 164 ↗ 516, (2) no-useless-constructor: 154 ↗ 238,
and (3) no-const-assign: 129, replacing no-this-before-super
as the third most common violation.

Parse Errors: We found 267,795 code snippets with parse er-
rors but no violations. While the original study included parse
errors in the total violation count, we introduced a seventh
category to separately list snippets with only parse errors.

Due to Stack Overflow’s evolution, the number of viola-
tions in each category has risen. Further, the ranking of
violations within certain categories has changed.

7 Limitations and Challenges

We briefly discuss our study’s limitations and the basic chal-
lenges of studying the security of Stack Overflow snippets.

Quality of original studies. This study replicates prior re-
search using the original methods on a newer dataset. Con-
sequently, any flaws or biases in the original studies are also
reflected in our replication.

Generalizability of results. Our study specifically targeted
research investigating the security properties of Stack Over-
flow code snippets. Thus, our findings may not apply to Stack
Overflow-based studies that explore other aspects, such as user
behavior, limiting the generalizability of our conclusions.

Dependence on available artifacts. The original studies’
quality and availability of the artifacts posed another lim-
itation. If a published artifact inaccurately implemented a
study’s methodology, these inaccuracies carried over into our
replication. Despite our best efforts to reuse the same source
artifacts, any errors or bugs in the original implementation
may have impacted our results. Therefore, the reliability of
our replication study is inherently linked to the accuracy and
completeness of the original research artifacts.

However, the biggest challenge in our study was the lack
of artifacts from prior research (see Table 1), which forced
us to re-implement the original methodology in various case
studies. This was not always possible (e.g., training a machine
learning-based classifier without access to the original data)
and can be error-prone (e.g., replacing deprecated toolchains).

Language detection. A general challenge for studies on
Stack Overflow is determining the programming language of
code snippets. Related work relied on post tags or the Guess-
lang tool (see R2 in Table 1). We evaluated these approaches
briefly and found neither is reliable (see [45] for details). In
comparison, ChatGPT outperformed either tool, but it is nei-
ther scalable in data set size nor economically reasonable for
our replication studies to create a ground truth of snippet lan-
guages. Thus, future work could create a fine-tuned LLM to
replace Guesslang for the language detection task.

Security classification. Several studies rely on a security
classification of code snippets by either building/using ded-
icated tools for specific languages (D2 in Table 1) or, in the
absence of a generic code security classifier, leveraging the
context of snippets (i.e., comments and commit messages;
D4 in Table 1). We used the tool by Jallow et al. [43] from
the latter category. However, this tool has a potentially high
false positive rate due to its keyword-based detection. Future
work could investigate a more reliable context-based tool, e.g.,
taking inspiration from other NLP-based solutions [7, 33].

User studies. Several studies involved user studies [6,11,17,
26,54,55,61,63,65] (R4, Table 1) and it is a limitation of this
work that we did not replicate any human-centered research.
Some of these prior works conducted developer surveys [11,
17, 26, 61] and are more amenable to replication. In contrast,
other works involved developer studies to solve programming
challenges with the help of StackOverflow [6] or to evaluate
their tools [54,58,65]. These studies require a carefully crafted
replication to isolate differences between participant groups
from the impact of Stack Overflow evolution.

8 Related Works

8.1 Meta-research
Meta-research is an important tool for evaluating and improv-
ing research practices. Ioannidis [40] investigated prior re-
search findings and found that most published research turned
out to be false. One factor contributing to this crisis is the
lack of code and data to verify research claims. Ioannidis et
al. [41] introduced a framework that serves as a benchmark to
holistically evaluate and improve research practices to make
results more reliable. They identified methods, reporting, re-
producibility, evaluation, and incentives as areas of interest

for research practices. Demir et al. [20] examined the repro-
ducibility and replicability of web measurement studies. They
discovered that many studies lacked proper documentation
of their experimental setups, which is essential for accurately
reproducing and replicating results. In particular, they found
that even slight variations in experimental setup could lead to
significant differences in results. The authors recommended
proper documentation and adopting standardized practices
to make web measurement findings more reliable. Weber et
al. [80] conducted a study of benchmarking studies to de-
velop guidelines to help computational scientists conduct
better benchmarking studies. While their guidelines are for
a different target group than ours, some of them translate to
our work. For instance, the guideline on selecting datasets
and reproducible research best practices can be transferred,
as it shows that security studies focused on Stack Exchange
datasets should be measured using different dataset versions
and that the code and data for studies should be made publicly
available to facilitate replication studies.

8.2 Dataset Evolution
Ceroni et al. [15] investigated Wikipedia’s dynamic nature to
examine how its content changes over time, specifically look-
ing at page edits. Their research highlights the significance of
understanding content evolution to evaluate the quality and
accuracy of information on Wikipedia. In a follow-up, Tran
et al. [75] leverage the evolution of data on Wikipedia to ana-
lyze the history of user edits to extract and represent complex
events. Fetterly et al. [23] provides a detailed investigation of
how web pages evolve over time to understand how that evo-
lution might impact crawling and indexing processes for the
web. Their study shed light on the importance of understand-
ing the evolution of web pages for improving web crawling
and indexing processes. Jallow et al. [43] is closely related
to us. They studied the impact of evolving Stack Overflow
code snippets on software developers. In contrast, we focus
on how code evolution might impact prior research findings.

Conducting time-series analysis to better understand data
that can change over time is explained in the textbooks of
several other research disciplines, such as economics [32],
environmental science [81], medicine [69], finance [76], social
sciences [14], or engineering [52].

9 Conclusions for Future Studies

Time-Series Analysis. Our systematization showed that
security-focused Stack Overflow studies relied on specific
dataset versions and non-stationary aspects. Among the 42
relevant papers we identified, only Ragkhitwetsagul et al. [61]
discussed the potential impact of evolution on their results.
Four works [37,56,68,84] use code evolution in their method-
ology but do not discuss its consequences for their findings.
With our six replication studies, we revealed that the findings

of four studies differ for newer dataset versions.1 This does
not mean that the results of prior research are wrong—but
missing context. Researchers are advised to provide additional
context around their results by treating the Stack Overflow
dataset as the time-series data it is. Considering the temporal
dimension of posts and conducting trend analysis can help
better understand such results, e.g., whether issues are recur-
ring or stable, and can address temporal dynamics, such as
differentiating short-lived trends from long-term changes. The
Stack Overflow dataset is particularly suited to this practice
since the versioning of posts allows analysis of the platform’s
prior states. While it is unrealistic to predict future changes
with certainty, considering multiple dataset versions and their
aspects’ stationarity provides insights into how changes on
Stack Overflow might affect the findings. For example, we
found that CWE types of C/C++ code snippets shifted over
time (see §6.1) while crypto API misuse in Java snippets
seemed stable or even increasing (see [45]). Trend analysis
is common in other research disciplines, where drawing con-
clusions from a single observation would be insufficient, if
not misleading. This is particularly true in fields such as eco-
nomics [32] (studying variables like GDP, inflation, or stock
prices), environmental science [81] (analyzing climate data
or temperature changes), or social sciences [14] (examining
voting patterns, crime rates, or demographic shifts). We sug-
gest that our discipline adopt such a longitudinal analysis
methodology when studying data that changes over time.

Open Science Best Practices. Although not a goal at the
outset of our work, we want to re-iterate some best prac-
tices for open science and reproducibility that we found dis-
regarded during our replication studies. We found that many
artifacts were not or only partially available (on request) or
non-functional. Making code and data available on request
is often insufficient [80], and experience shows that paper
authors can often ignore such requests. Thus, our work un-
derlines the need to establish better efforts for open science,
and we welcome the recent steps to introduce artifact eval-
uation committees and require artifacts for accepted papers.
Moreover, we also found that the information provided in the
papers was often insufficient to allow others to re-implement
the methods.Both the ACM SIGPLAN Empirical Evalua-
tion Guidelines [4] and van der Kouwe et al.’s benchmarking
flaws [77] remark that lack of such information leads to a lack
of reproducibility and can hinder scientific progress. Thus, we
urge researchers to report the software versions used in their
methods. Containerization tools, like Docker, could encapsu-
late software environments and preserve package versions and
dependencies, easing replication efforts and artifact releases.

1The two studies with stable results are in our extended version [45].

Ethics Considerations and Compliance with the
Open Science Policy

Open Science and Availability
The artifact for this paper is publicly accessible and perma-
nently hosted on Zenodo [44].

Ethics Considerations
Reproducibility and Reliability. We tried to consider the
implications of our findings for the broader field. Where our
replication studies produced different results from the origi-
nal study, we tried to discuss the possible reasons for these
differences and their impact on the original findings. We aim
to identify the potential causes for diverging results in a sys-
tematic way before our replication study in §3 and §4.

Originality and Plagiarism. We acknowledge the original
studies we replicated. We avoid plagiarism by properly cred-
iting the original authors and citing their work appropriately.

Respect for Original Research. We tried to be respectful
of the original researchers’ work. Critiques or discussions
regarding the original study are phrased constructively and
based on the data and findings.

Consent for the Use of Original Data. All data and code
artifacts of the prior studies were either publicly available (on
request) or re-implemented based on the published results. We
credited the original researchers appropriately if their artifacts
were reused, and our systematization in Section 3 highlights
which artifacts were available.

Communication with Original Researchers. We engaged
with the original researchers, especially when we could not
reproduce the original results and when artifacts were un-
available or seemingly flawed. This was intended to help
ensure that any discrepancies are thoroughly understood and
addressed in a collaborative manner.

Responsible Disclosure and Report Findings. Some of
the replicated studies [25, 84] aim at discovering vulnera-
ble code snippets. Replicating their methodology on a newer
Stack Overflow data set can result in discovering additional
snippets with weaknesses. While discovered vulnerabilities
in other code bases (e.g., production or open-source software)
should be responsibly disclosed to vendors/developers, there
are no guidelines about disclosure for publicly posted code
snippets. While the technical option exists to add a comment2

on each post with a vulnerable snippet, we found this to be
an ethical dilemma. First, the vulnerability does not affect

2https://api.stackexchange.com/docs/create-comment

https://api.stackexchange.com/docs/create-comment

Stack Overflow but only developers that copy such snippets
into their code bases. Thus, the disclosure might not reach the
affected parties. Second, the employed methodologies only
discover weaknesses, but without a concrete explanation of
the vulnerability and the corresponding fix, a comment would
not benefit the community. Third, without careful considera-
tion of the context of the snippet, commenting on weaknesses
can easily create noise and even be considered offensive/use-
less (e.g., if the original question asked about an explanation
of a vulnerability, i.e., the vulnerability was posted on pur-
pose). Without being able to address the second and third con-
cerns at scale, such auto-commenting of weaknesses would
also violate the Stack Overflow code of conduct.3 We fur-
ther consulted the Stack Exchange Meta discourse4 about
how vulnerabilities in code snippets should be reported. The
meta-discussions mirror, to some extent, our concerns. For
example, that mass commenting will create noise5 and that
such discoveries should be accompanied by code fixes6. The
community also discussed other measures, such as introduc-
ing a “security” or “caution” flag to posts with vulnerabilities
or outdated security measures.7 However, the community also
agrees on the sentiment that while code snippets could be
copied&pasted, Stack Overflow is a teaching platform for de-
velopers to learn how to solve their specific problems and that
authored code should be owned, hence, not just pasted and in-
stead, the solutions on the platform should be scrutinized and
lead to further education and ultimately custom solutions.8

Since it is currently impossible to make comments/edits of the
required quality, we did not create fixes for newly discovered
posts with weaknesses for the above-stated reasons. We note
that neither Zhang et al. [84] nor Fischer et al. [25] mentioned
any attempted disclosure on Stack Overflow—Fischer et al.,
however, in follow-up work [27], built a browser plugin to
warn Stack Overflow users of insecure snippets.

References

[1] “Artifact for Paper: Measuring the Effects of Stack Overflow
Code Snippet Evolution.” [Online]. Available: https://osf.io/s
2vgm/?view_only=785ada7b1efd4ac6aaf5a77cc5123076

[2] “Artifact for Paper: Snakes in Paradies.” [Online]. Available:
https://figshare.com/s/588b0d450310c05d25ab?file=146448
05

3https://stackoverflow.com/help/privileges/comment
4https://meta.stackexchange.com/
5https://meta.stackexchange.com/questions/258328/righ

t-approach-to-crawl-and-identify-bad-code
6https://meta.stackexchange.com/questions/9460/how-to-d

eal-with-questions-answers-with-a-security-vulnerability
7https://meta.stackexchange.com/questions/301592/keepin

g-answers-related-to-security-up-to-date, https://meta.sta
ckexchange.com/questions/89469/what-to-do-with-questions-w
ith-harmful-content/89474

8https://meta.stackexchange.com/questions/334811/stac
k-overflow-made-the-bbc-news-copycat-coders-create-vulne
rable-apps

[3] Joern: The bug hunter’s workbench. [Online]. Available:
https://joern.io/

[4] “SIGPLAN Empirical Evaluation Guidelines.” [Online].
Available: https://www.sigplan.org/Resources/EmpiricalEva
luation/

[5] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse
from stackoverflow: An exploratory study on android apps,”
Information and Software Technology, vol. 88, 2017.

[6] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and
C. Stransky, “You get where you’re looking for: The impact
of information sources on code security,” in Proc. 37th IEEE
Symposium on Security and Privacy (SP ’16), 2016.

[7] O. Akgul, S. T. Peddinti, N. Taft, M. L. Mazurek, H. Harkous,
A. Srivastava, and B. Seguin, “A decade of Privacy-Relevant
android app reviews: Large scale trends,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024.

[8] M. Alhanahnah and Q. Yan, “Towards best secure coding prac-
tice for implementing ssl/tls,” in IEEE Conference on Com-
puter Communications Workshops, 2018.

[9] L. Almeida, M. Gonzaga, J. F. Santos, and R. Abreu, “Rexstep-
per: a reference debugger for javascript regular expressions,”
in 2023 IEEE/ACM 45th International Conference on Software
Engineering: Companion Proceedings, 2023.

[10] M. Bagherzadeh, N. Fireman, A. Shawesh, and
R. Khatchadourian, “Actor concurrency bugs: a com-
prehensive study on symptoms, root causes, api usages, and
differences,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA,
Nov. 2020.

[11] W. Bai, O. Akgul, and M. L. Mazurek, “A qualitative investiga-
tion of insecure code propagation from online forums,” in 2019
IEEE Cybersecurity Development (SecDev), 2019, pp. 34–48.

[12] S. Baltes and S. Diehl, “Usage and attribution of stack over-
flow code snippets in github projects,” Empirical Software
Engineering, vol. 24, no. 3, pp. 1259–1295, Jun 2019.

[13] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Studying the
origin, evolution, and usage of stack overflow code snippets,”
in Proc. 16th International Conference on Mining Software
Repositories (MSR 2019), 2019.

[14] J. M. Box-Steffensmeier, J. R. Freeman, M. P. Hitt, and J. C. W.
Pevehouse, Time Series Analysis for the Social Sciences, ser.
Analytical Methods for Social Research. Cambridge Univer-
sity Press, 2014.

[15] A. Ceroni, M. Georgescu, U. Gadiraju, K. D. Naini, and
M. Fisichella, “Information evolution in wikipedia,” in Pro-
ceedings of The International Symposium on Open Collabora-
tion, ser. OpenSym ’14. ACM, 2014.

[16] M. Chakraborty, “Does reusing pre-trained nlp model propa-
gate bugs?” in Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 2021.

[17] F. Chen and S. Kim, “Crowd debugging,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engi-
neering, ser. ESEC/FSE 2015. ACM, 2015.

https://osf.io/s2vgm/?view_only=785ada7b1efd4ac6aaf5a77cc5123076
https://osf.io/s2vgm/?view_only=785ada7b1efd4ac6aaf5a77cc5123076
https://figshare.com/s/588b0d450310c05d25ab?file=14644805
https://figshare.com/s/588b0d450310c05d25ab?file=14644805
https://stackoverflow.com/help/privileges/comment
https://meta.stackexchange.com/
https://meta.stackexchange.com/questions/258328/right-approach-to-crawl-and-identify-bad-code
https://meta.stackexchange.com/questions/258328/right-approach-to-crawl-and-identify-bad-code
https://meta.stackexchange.com/questions/9460/how-to-deal-with-questions-answers-with-a-security-vulnerability
https://meta.stackexchange.com/questions/9460/how-to-deal-with-questions-answers-with-a-security-vulnerability
https://meta.stackexchange.com/questions/301592/keeping-answers-related-to-security-up-to-date
https://meta.stackexchange.com/questions/301592/keeping-answers-related-to-security-up-to-date
https://meta.stackexchange.com/questions/89469/what-to-do-with-questions-with-harmful-content/89474
https://meta.stackexchange.com/questions/89469/what-to-do-with-questions-with-harmful-content/89474
https://meta.stackexchange.com/questions/89469/what-to-do-with-questions-with-harmful-content/89474
https://meta.stackexchange.com/questions/334811/stack-overflow-made-the-bbc-news-copycat-coders-create-vulnerable-apps
https://meta.stackexchange.com/questions/334811/stack-overflow-made-the-bbc-news-copycat-coders-create-vulnerable-apps
https://meta.stackexchange.com/questions/334811/stack-overflow-made-the-bbc-news-copycat-coders-create-vulnerable-apps
https://joern.io/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/

[18] L. Chen, S. Hou, Y. Ye, T. Bourlai, S. Xu, and L. Zhao, “itrustso:
An intelligent system for automatic detection of insecure code
snippets in stack overflow,” in 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Min-
ing (ASONAM), 2019.

[19] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags,
“How reliable is the crowdsourced knowledge of security imple-
mentation?” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019.

[20] N. Demir, M. Große-Kampmann, T. Urban, C. Wressnegger,
T. Holz, and N. Pohlmann, “Reproducibility and replicability
of web measurement studies,” in Proc. ACM Web Conference,
2022.

[21] D. Evans, “Systematizing systematization of knowledge.”
[Online]. Available: https://oaklandsok.github.io/

[22] U. Ferreira Campos, G. Smethurst, J. P. Moraes, R. Bonifácio,
and G. Pinto, “Mining rule violations in javascript code snip-
pets,” in 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), 2019.

[23] D. Fetterly, M. Manasse, M. Najork, and J. Wiener, “A large-
scale study of the evolution of web pages,” in 12th Interna-
tional Conference on World Wide Web. ACM, 2003.

[24] E. Firouzi, A. Sami, F. Khomh, and G. Uddin, “On the use of c#
unsafe code context: An empirical study of stack overflow,” in
Proc. 14th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, 2020.

[25] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar,
M. Backes, and S. Fahl, “Stack overflow considered harmful?
the impact of copy&paste on android application security,” in
Proc. 38th IEEE Symposium on Security and Privacy (SP ’17).
IEEE Computer Society, 2017.

[26] F. Fischer, Y. Stachelscheid, and J. Grossklags, “The effect of
google search on software security: Unobtrusive security inter-
ventions via content re-ranking,” in Proc. 28th ACM Confer-
ence on Computer and Communication Security (CCS), 2021.

[27] F. Fischer, H. Xiao, C.-Y. Kao, Y. Stachelscheid, B. Johnson,
D. Razar, P. Fawkesley, N. Buckley, K. Böttinger, P. Muntean,
and J. Grossklags, “Stack overflow considered helpful! deep
learning security nudges towards stronger cryptography,” in
Proc. 28th USENIX Security Symposium (SEC), 2019.

[28] W. Fuller, Introduction to statistical time series, ser. A Wiley
publication in applied statistics. Wiley, 1976.

[29] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei,
“Fixing recurring crash bugs via analyzing q&a sites (t),” in
Proc. 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015.

[30] A. Ghanbari, D.-G. Thomas, M. A. Arshad, and H. Rajan,
“Mutation-based fault localization of deep neural networks,” in
Proc. 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE Press, 2024.

[31] Guesslang. (2021) Guesslang documentation. [Online].
Available: https://guesslang.readthedocs.io/en/latest/

[32] J. D. Hamilton, Time Series Analysis. Princeton University
Press, 1994.

[33] H. Harkous, S. T. Peddinti, R. Khandelwal, A. Srivastava, and
N. Taft, “Hark: A deep learning system for navigating privacy
feedback at scale,” in 43rd IEEE Symposium on Security and
Privacy (SP’22), 2022.

[34] S. Holm, “A simple sequentially rejective multiple test pro-
cedure,” Scandinavian Journal of Statistics, vol. 6, no. 2, pp.
65–70, 1979.

[35] H. Hong. (2022) Data collection sql script. [Online]. Available:
https://github.com/hyunji-Hong/Dicos-public/blob/main/src/
sql/collecting_allhisotyPost.sql

[36] ——. (2022) Dicos github repository. [Online]. Available:
https://github.com/hyunji-Hong/Dicos-public

[37] H. Hong, S. Woo, and H. Lee, “Dicos: Discovering insecure
code snippets from stack overflow posts by leveraging user
discussions,” in Annual Computer Security Applications Con-
ference (ACSAC). ACM, 2021.

[38] H. Imai and A. Kanaoka, “Time series analysis of copy-and-
paste impact on android application security,” in 13th Asia
Joint Conference on Information Security (AsiaJCIS), 2018.

[39] S. E. Inc. (2024) Data explorer. [Online]. Available:
https://data.stackexchange.com/stackoverflow/query/185856
1/total-number-of-question-and-answer-posts

[40] J. P. A. Ioannidis, “Why most published research findings are
false,” PLOS Medicine, vol. 2, no. 8, p. null, 08 2005.

[41] J. P. A. Ioannidis, D. Fanelli, D. D. Dunne, and S. N. Good-
man, “Meta-research: Evaluation and improvement of research
methods and practices,” PLOS Biology, vol. 13, no. 10, 2015.

[42] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing
deep neural networks: fix patterns and challenges,” in Proc.
ACM/IEEE 42nd International Conference on Software Engi-
neering (ICSE). ACM, 2020.

[43] A. Jallow, M. Schilling, M. Backes, and S. Bugiel, “Measuring
the effects of stack overflow code snippet evolution on open-
source software security,” in 45th IEEE Symposium on Security
and Privacy (SP’24). IEEE, 2024.

[44] A. Jallow and S. Bugiel, “Dataset and code for: Stack overflow
meets replication: Security research amid evolving code
snippets,” 2025. [Online]. Available: https://doi.org/10.5281/
zenodo.14759484

[45] ——, “Stack overflow meets replication: Security research
amid evolving code snippets (extended version),” 2025.
[Online]. Available: https://arxiv.org/abs/2501.16948v2

[46] H. Y. Jhoo, S. Kim, W. Song, K. Park, D. Lee, and K. Yi, “A
static analyzer for detecting tensor shape errors in deep neural
network training code,” in Proc. ACM/IEEE 44th International
Conference on Software Engineering (ICSE), 2022.

[47] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” vol. 2,
01 2007.

[48] D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin,
“Testing the null hypothesis of stationarity against the alterna-
tive of a unit root: How sure are we that economic time series
have a unit root?” Journal of Econometrics, vol. 54, no. 1-3,
pp. 159–178, 1992.

https://oaklandsok.github.io/
https://guesslang.readthedocs.io/en/latest/
https://github.com/hyunji-Hong/Dicos-public/blob/main/src/sql/collecting_allhisotyPost.sql
https://github.com/hyunji-Hong/Dicos-public/blob/main/src/sql/collecting_allhisotyPost.sql
https://github.com/hyunji-Hong/Dicos-public
https://data.stackexchange.com/stackoverflow/query/1858561/total-number-of-question-and-answer-posts
https://data.stackexchange.com/stackoverflow/query/1858561/total-number-of-question-and-answer-posts
https://doi.org/10.5281/zenodo.14759484
https://doi.org/10.5281/zenodo.14759484
https://arxiv.org/abs/2501.16948v2

[49] S. A. Licorish and T. Nishatharan, “Contextual profiling of
stack overflow java code security vulnerabilities initial insights
from a pilot study,” in 21st International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C).
IEEE Computer Society, 2021.

[50] S. A. Licorish and M. Wagner, “Dissecting copy/delete/re-
place/swap mutations: insights from a gin case study,” in Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference Companion, ser. GECCO ’22. ACM, 2022.

[51] Y. Liu, Y. Yan, C. Sha, X. Peng, B. Chen, and C. Wang, “Deep-
anna: Deep learning based java annotation recommendation
and misuse detection,” in IEEE International Conference on
Software Analysis, Evolution and Reengineering, 2022.

[52] L. Ljung, System identification: theory for the user. Prentice-
Hall, Inc., 1986.

[53] M. Madsen, O. Lhoták, and F. Tip, “A model for reasoning
about javascript promises,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, Oct. 2017. [Online]. Available:
https://doi.org/10.1145/3133910

[54] S. Mahajan, N. Abolhassani, and M. R. Prasad, “Recommend-
ing stack overflow posts for fixing runtime exceptions using
failure scenario matching,” in Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. ACM, 2020.

[55] S. Mahajan and M. R. Prasad, “Providing real-time assistance
for repairing runtime exceptions using stack overflow posts,”
in IEEE Conference on Software Testing, Verification and Vali-
dation (ICST), 2022.

[56] S. S. Manes and O. Baysal, “Studying the change histories
of stack overflow and github snippets,” in IEEE/ACM 18th
International Conference on Mining Software Repositories
(MSR), 2021.

[57] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty,
“Secure coding practices in java: Challenges and vulnerabili-
ties,” in IEEE/ACM 40th International Conference on Software
Engineering (ICSE), 2018.

[58] K. Mindermann and S. Wagner, “Fluid intelligence doesn’t
matter! effects of code examples on the usability of crypto
apis,” in Proc. ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings. ACM, 2020.

[59] M. Moradi Moghadam, M. Bagherzadeh, R. Khatchadourian,
and H. Bagheri, “µakka: Mutation testing for actor concurrency
in akka using real-world bugs,” in Proc. 31st ACM Joint Euro-
pean Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2023.

[60] R. Pan, “Does fixing bug increase robustness in deep learn-
ing?” in Proc. ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings (ICSE), 2020.

[61] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and
R. Oliveto, “Toxic code snippets on stack overflow,” IEEE
Transactions on Software Engineering, vol. 47, no. 3, 2021.

[62] A. Rahman, E. Farhana, and N. Imtiaz, “Snakes in paradise?
insecure python-related coding practices in stack overflow,” in
Proceedings of the 16th International Conference on Mining
Software Repositories, ser. MSR ’19. IEEE Press, 2019.

[63] M. S. Rahman and C. K. Roy, “An insight into the reusability
of stack overflow code fragments in mobile applications,” in
IEEE 16th International Workshop on Software Clones, 2022.

[64] A. Reinhardt, T. Zhang, M. Mathur, and M. Kim, “Augmenting
stack overflow with api usage patterns mined from github,” in
Proc. 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 2018.

[65] X. Ren, J. Sun, Z. Xing, X. Xia, and J. Sun, “Demystify official
api usage directives with crowdsourced api misuse scenarios,
erroneous code examples and patches,” in IEEE/ACM 42nd
International Conference on Software Engineering, 2020.

[66] H. Schmidt, M. van Aerssen, C. Leich, A. Benni, S. Al Ali, and
J. Tanz, “Copypastavulguard – a browser extension to prevent
copy and paste spreading of vulnerable source code in forum
posts,” in Proc. 17th International Conference on Availability,
Reliability and Security (ARES). ACM, 2022.

[67] Sebastian Baltes. (2022) Sotorrent post history extractor.
[Online]. Available: https://github.com/sotorrent/posthistory-e
xtractor

[68] M. Selvaraj and G. Uddin, “Does collaborative editing help
mitigate security vulnerabilities in crowd-shared iot code ex-
amples?” in Proc. 16th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement, 2022.

[69] R. Shumway and D. Stoffer, Time Series Analysis and Its Ap-
plications With R Examples, 2011, vol. 9.

[70] A. Soni and S. Nadi, “Analyzing comment-induced updates
on stack overflow,” in Proc. 16th International Conference on
Mining Software Repositories (MSR ’19). IEEE Press, 2019.

[71] Stack Exchange, Inc., “Stack Exchange Data Dump,” accessed
2023-06-13. [Online]. Available: https://archive.org/details/st
ackexchange/

[72] Stack Exchange Meta. (2022) Academic papers using stack
exchange data. [Online]. Available: https://meta.stackexchan
ge.com/questions/134495/academic-papers-using-stack-exc
hange-data

[73] Stack Overflow. (2024) Revisions of answer post 14424800.
[Online]. Available: https://stackoverflow.com/posts/144248
00/revisions

[74] N. M. Synovic, M. Hyatt, R. Sethi, S. Thota, Shilpika, A. J.
Miller, W. Jiang, E. S. Amobi, A. Pinderski, K. Läufer, N. J.
Hayward, N. Klingensmith, J. C. Davis, and G. K. Thiru-
vathukal, “Snapshot metrics are not enough: Analyzing soft-
ware repositories with longitudinal metrics,” in Proc. 37th
IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2023.

[75] T. Tran, A. Ceroni, M. Georgescu, K. Djafari Naini, and
M. Fisichella, “Wikipevent: Leveraging wikipedia edit his-
tory for event detection,” in International Conference on Web
Information Systems Engineering. Springer, 2014.

[76] R. Tsay, Analysis of financial time series, 2nd ed., ser. Wiley
series in probability and statistics. Wiley-Interscience, 2005.

[77] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuf-
frida, “Sok: Benchmarking flaws in systems security,” in Euro-
pean Symposium on Security and Privacy (EuroSP). IEEE
Computer Society, 2019.

https://doi.org/10.1145/3133910
https://github.com/sotorrent/posthistory-extractor
https://github.com/sotorrent/posthistory-extractor
https://archive.org/details/stackexchange/
https://archive.org/details/stackexchange/
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
https://meta.stackexchange.com/questions/134495/academic-papers-using-stack-exchange-data
https://stackoverflow.com/posts/14424800/revisions
https://stackoverflow.com/posts/14424800/revisions

[78] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and
A. K. Motlagh, “An empirical study of c++ vulnerabilities in
crowd-sourced code examples,” arXiv:1910.01321, 2019.

[79] H. Vocke, “We’re switching to commonmark,” https://meta.sta
ckexchange.com/questions/348746/were-switching-to-com
monmark, 2020.

[80] L. M. Weber, W. Saelens, R. Cannoodt, C. Soneson,
A. Hapfelmeier, P. P. Gardner, A.-L. Boulesteix, Y. Saeys,
and M. D. Robinson, “Essential guidelines for computational
method benchmarking,” Genome biology, vol. 20, 2019.

[81] D. S. Wilks, Statistical methods in the atmospheric sciences.
Elsevier Academic Press, 2011.

[82] A. Yadavally, T. N. Nguyen, W. Wang, and S. Wang, “(partial)
program dependence learning,” in 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE), 2023.

[83] Y. Ye, S. Hou, L. Chen, X. Li, L. Zhao, S. Xu, J. Wang, and
Q. Xiong, “Icsd: An automatic system for insecure code snip-
pet detection in stack overflow over heterogeneous information
network,” in Proceedings of the 34th Annual Computer Secu-
rity Applications Conference, ser. ACSAC ’18. ACM, 2018.

[84] H. Zhang, S. Wang, H. Li, T. Chen, and A. E. Hassan, “A
study of c/c++ code weaknesses on stack overflow,” IEEE
Transactions on Software Engineering, vol. 48, no. 07, jul 2022.

[85] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim,
“Are code examples on an online q&a forum reliable?: A study
of api misuse on stack overflow,” in Proc. 40th International
Conference on Software Engineering (ICSE’18), 2018.

[86] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensorflow program bugs,” in Proc. 27th
ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). ACM, 2018.

A Additional Details About Case Study 1

Table 6 presents a detailed, side-by-side comparison of the
results from the original methodology by Zhang et al. [84]
and our re-implementation, which utilized Cppcheck 1.86
for both language and security weakness detection (see Fig-
ure 6 for details). We identified 15,724 C/C++ answers con-
taining security weaknesses. Of these, 11,142 answers were
also flagged as containing weaknesses in the original study’s
Answerw = 11,235. This indicates that our approach missed
only 93 answers with weaknesses from the original study,
demonstrating that our approach captures the same snippets
as the original methodology. We surmise that the increase in
detected snippets and snippet versions in our methodology is
rooted in Guesslang’s performance in the original methodol-
ogy, i.e., many C/C++ snippets were misclassified as another
language and hence not analyzed with Cppcheck by the au-
thors. However, since the exact Cppcheck version used by
the authors is unknown and we empirically estimated it to
be version 1.86, we cannot exclude that our guessed version
differs and performs differently from the authors’ version.

Table 7 compares the proportion of Codew versus the num-
ber of code revisions that were detected with the original
methodology by Zhang et al. [84] for SOTorrent18 and our
re-implementation based on SOTorrent22.

Table 8 lists the vulnerable answers, snippets, and ver-
sions detected with different versions of Cppcheck on differ-
ent versions of SOTorrent. A Shapiro-Wilk test confirmed
the normality of the distribution of differences between
paired observations for the SOTorrent versions for Cppcheck
v1.86 (0.832, p = 0.193) and v2.13 (0.852, p = 0.247). A
paired t-test indicates that the effect of upgrading the SO-
Torrent dataset is not consistent across Cppcheck versions
(t =−8.90, p < 0.05). The change from SOTorrent18 to SO-
Torrent22 significantly impacted the results when using Cp-
pcheck v2.13 compared to v1.86, implying that changes in
the dataset can have a different impact depending on the
Cppcheck version. Although using Cppcheck v1.86 on SO-
Torrent22 would better isolate the effect of code evolution, we
decided to report the results of Cppcheck v2.13 in our replica-
tion study. We reason that if the authors had conducted their
experiment later, they would have used the newer version.

B Additional Details About Case Study 2

We replicated the accuracy measurements for C/C++ and
Android posts as presented in Table 3 and Table 4 of the
original paper [37]. Our comparative findings for C/C++ posts
and Android are in our extended version [45]. For C/C++
posts, we observed an accuracy of 11% (authors reported
93%), a recall of 92% (vs. 94%), and a precision of 27%
(vs. 90%). Similarly, for Android posts, we found a significant
drop in precision (12% vs. 86%) and accuracy (41% vs. 86%)
while recall remained high (78% vs. 89%).

As stated in §6.2, we reproduced the authors’ results for
RQ1 using the same dataset version. Our comparative find-
ings are shown in Figure 9. The authors concluded that older
posts are less likely to introduce insecure posts than newer
ones. While we observed similar trends, we found different
yearly numbers of secure/insecure posts from those reported
by the authors. For instance, in 2008, the authors observed
63 insecure and 2,446 secure posts while we observed 82
insecure and 1,292 secure posts.

A two-sample z-test for the overall proportions of the inse-
cure to secure posts ratio between the original and our replica-
tion results shows a significant difference (Z = −121.962,
p < 0.001). To evaluate whether the proportion of inse-
cure posts differed significantly between the originally re-
ported results and our replication study, we conducted two-
proportion z-tests for each year from 2008 to 2020. The
Holm–Bonferroni correction [34] was applied to account for
multiple comparisons across the 13 years. Our results indicate
that for all years, the differences in the proportion of insecure
posts between the two studies are statistically significant after
the Holm–Bonferroni correction (adjusted α levels ranged

https://meta.stackexchange.com/questions/348746/were-switching-to-commonmark
https://meta.stackexchange.com/questions/348746/were-switching-to-commonmark
https://meta.stackexchange.com/questions/348746/were-switching-to-commonmark

Table 6: Comparison of results by Zhang et al. (cf. Table 1 in [84]) and our evaluation using Cppcheck v1.86.

SOTorrent18 (Original) SOTorrent18 (Evaluation)
Answer # Code Snippet # Code Version # Answer # Code Snippet # Code Version #

SOTorrent 867,734 1,561,550 1,833,449 SOTorrent 867,734 1,561,550 1,833,449
LOC >= 5 527,932 724,784 919,947 LOC >= 5 527,932 724,784 919,947
Guesslang 490,778 646,716 826,520 Cppcheck v1.86 141,215 170,974 206,582
Codew 11,235 11,748 14,934 Codew 15,724 16,533 20,664

Table 7: The proportion of Codew versus the number of code revisions by Zhang et al. [84] and our replication study using
SOTorrent22 and Cppcheck v2.13. (cf. Table 2 in [84])

Original results based on SOTorrent18 Replication results based on SOTorrent22
#revisions Snippets Unchanged Improved Deteriorated Snippets Unchanged Improved Deteriorated

0 8,103 NA NA NA 24,388 NA NA NA
≥ 1 3,645 1,886 (51.7%) 1218 (33.4%) 541 (14.8%) 5,866 5,511 (93.9%) 221 (3.8%) 134 (2.3%)
1 2,369 1,340 (56.6%) 714 (30.1%) 315 (13.3%) 4,391 4,179 (95.2%) 136 (3.1%) 76 (1.7%)
2 774 349 (45.1%) 294 (38.0%) 131 (16.9%) 1,058 969 (91.6%) 54 (5.1%) 35 (3.3%)
≥ 3 502 197 (39.2%) 210 (41.8%) 95 (18.9%) 417 363 (87.1%) 31 (7.4%) 23 (5.5%)

Table 8: The results of Cppcheck v1.86 and Cppcheck v2.13
on different versions of the SOTorrent dataset.

Answer # Code Snippet # Code Version #
SOTorrent18

Cppcheck v1.86 15,724 16,533 20,664
Cppcheck v2.13 23,253 24,699 30,923

SOTorrent22
Cppcheck v1.86 19,485 20,450 25,832
Cppcheck v2.13 28,521 30,254 38,248

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

63

251
458

612
966

1,408 1,544 1,675 1,554 1,318 1,149
699 761

2,446

11,114
20,755

37,260
58,655 75,297 79,599 82,983 79,647 85,546

58,476
35,896 28,388

82

363
649

1,052
1,665

2,557 2,674 2,996 3,011 2,602 2,260 1,878 1,929
1,292

5,559
10,712

20,041
30,205

40,690 40,289 40,373 38,474 34,462 28,557 26,625 25,868

Insecure Posts (Original) Secure Posts (Original) Insecure Posts (Replication) Secure Posts (Replication)

Figure 9: Yearly distribution of secure and insecure posts
discovered by DICOS (logarithmic scale) as reported by the
authors (Figure 6 in [37]) and found in our replication study.

from 0.0038 to 0.05, all p-values < 0.05). This suggests a con-
sistent and significant disparity in the proportion of insecure
posts across the entire study period.

Figure 10 compares the original results and the replication
findings. As explained in §6.2, we found a higher ratio of
insecure posts in both accepted (1.67% ↗ 7.72%) and non-
accepted answers (1.99% ↗ 6.61%). Nevertheless, the orig-
inal conclusion that secure posts outnumber insecure posts
in both categories still remains valid. A two-sample z-test
for proportions of the insecure to secure posts ratio between
the original and our replication results shows a significant
difference (Z =−126.888, p < 0.001).

Figure 11 presents a comparison between the authors’ orig-
inal results and the replication findings for the types of in-

Accepted posts Non-accepted posts

4,588
7,870

270,042
386,020

11,678 15,566

151,289
235,492

Insecure Posts (Original)
Secure Posts (Original)

Insecure Posts (Replication)
Secure Posts (Replication)

Figure 10: Ratio of insecure accepted and non-accepted posts
discovered by DICOS (logarithmic scale) as reported by the
authors (Figure 7 in [37]) and found in our replication study.

Undefined
behaviour

Null-
terminated
string issue

Memory
leak

Buffer
overflow

Initialization
issue

Infinite
loop

Out-of-
bounds error

Others

367

175

91 90
49

23 17
68

16 10
43

6 3 1 0 15

Insecure snippets with all three types of changes
Original Replication

Figure 11: Types of discovered insecure code snippets with
three types of changes discovered by DICOS as reported by
the authors (Figure 8 in [37]) and our replication study.

secure code snippets with all three types of changes (i.e.,
changes in security-sensitive APIs, security-related keywords,
and control flows). Overall, there is a significant decrease
in the number of snippets with all three change types, for
instance, Undefined behavior (367 ↘ 16), null-terminated
string issue (175 ↘ 10) and out-of-bounds error (17 ↘ 0).

	Introduction
	Background & Motivation
	Systematization of Relevant Works
	Literature Search
	Comparison Criteria

	Relevance of Stack Overflow Evolution
	Evolution of Stack Overflow
	Replication Case Studies
	Case Study 1: C/C++ Code Weaknesses
	Original Methodology
	Re-Implementation
	Replication

	Case Study 2: Discovering Insecure Code
	Original Methodology
	Implementation
	Replication

	Case Study 3: Snakes in Paradies
	Original Methodology
	Implementation
	Replication

	Case Study 4: Mining Rule Violations
	Original Methodology
	Implementation
	Replication

	Limitations and Challenges
	Related Works
	Meta-research
	Dataset Evolution

	Conclusions for Future Studies
	Additional Details About Case Study 1
	Additional Details About Case Study 2

