Research Project Proposal
Increasing Efficiency and Explainability of
Hardware Verification with Fuzzing
Techniques

Eric Ackermann, CISPA
July 17, 2024

Hardware Description Languages (HDLs) such as SystemVerilog allow en-
gineers to rapidly design and prototype electronic circuits. While originally
intended only for simulation and verification of designs, modern synthe-
sis tools can synthesize HDL to Field Programmable Gate Array (FPGA)
configurations or even standard-cell Application-Specific Integrated Circuits
(ASICs). For both FPGAs and ASICs, the options for debugging a design in
hardware are fairly limited. At the same time, especially for ASICs, changes
after tape-out (manufacturing of the first ASIC) are prohibitively expensive.
Thus, functional verification (i.e., testing of the design before synthesis) is
crucial for avoiding bugs to propagate into the actual hardware.

However, existing methodologies commonly rely on constrained-random
generation of test cases only. Thereby, computational effort of verification
is high, and there is no guarantee that all valid test cases will be gener-
ated during the verification run time. Anecdotal evidence also suggests that
constrained-random solvers tend to only cover a subset of the valid input
space under certain conditions.

For the purpose of functional verification, verification languages such as
SystemVerilog include language constructs for user-defined input constraints
and collecting functional coverage. Thus, this project aims at exploiting these
features to enable a fuzzing approach for the generation of test cases, aiming
at faster completion of functional verification. To this end, the existing input
constraints can serve as corpus for the fuzzer, while functional coverage can
serve as feedback.



Background

SystemVerilog is a Hardware Description Language (HDL) consisting of a synthesizable
and a non-synthesizable subset. The synthesizable subset is used to model hardware
circuits and can be synthesized onto Field-Programmable Gate Arrays (FPGAs) or
Application-Specific Integrated Circuits (ASICs), allowing the user to program hard-
ware circuits in the same way as software programs. Hardware verification is crucial for
preventing bugs in the synthesizable code (Device under Test, DUT) from reaching tape-
out (production of an ASIC), which would cause expensive re-engineering of the circuit.
Thus, the extensive non-synthesizable subset of the language consists of object-oriented
constructs that are intended primarily for hardware verification [6]. Thereby, object-
oriented patterns such as encapsulation of data in classes, factory methods, inheritance
and polymorphism can be used in verification, increasing programmer efficiency. Spe-
cialized constructs such as interfaces allow bridging the gap between the synthesizable
circuit and the non-synthesizable verification testbench.

Universal Verification Methodology (UVM) is an industry-standard verification method-
ology for hardware designs, built on top of SystemVerilog and a testing framework with
the same name [5]. At the core of UVM, a transaction object contains a transaction for
a device (e.g., in a DMA device, the starting address, destination address and length
of a transfer). The transaction is handed to an agent object, which is responsible for
breaking the transaction down into individual bus transactions and transferring them
to the driver. The driver uses an interface object to pass the input transaction to the
DUT, usually via a standard bus such as AXI. A monitor analyzes the DUT’s out-
put and generates a response transaction (e.g., a memory request that the DMA device
actually performed). A scoreboard computes an expected response from the input trans-
action. Finally, a checker compares the real and expected response and raises an error
if the device did something unexpected. In addition, there are SystemVerilog assertions
which can be used to raise errors when invariants are violated. Such invariants are, e.g.,
typically defined in the specifications of bus protocols.

Crucially, in UVM, transactions are generated randomly by a generator object. To
this end, a constraint language is built into the SystemVerilog language. This allows
the verification engineer to define the properties of valid transactions. For example, a
DMA might only accept addresses that are 8-byte aligned, or the destination address
might have to be either a device register or a memory address depending on the transac-
tion type. Especially for components such as bus infrastructure components, constraints
can be derived directly from the bus protocol specification and possibly shared between
projects. Thus, the constraints essentially define a corpus of valid inputs. The methodol-
ogy assumes that everything not covered by random transactions cannot be encountered
at run time (e.g., inputs might only be possible if a different component violates the bus
protocol).

A crucial question in hardware verification is: When has verification been completed?
To this end, SystemVerilog includes a functional coverage system [6]. Functional coverage
allows users to indicate which states of the DUT and testbench should be monitored
(e.g., state machines, input transactions, output transactions, etc.) and when they can



be sampled (e.g., on a clock edge). Further, a system of coverage bins allows precise
control over the expected outputs. For example, bins can ensure that all possible types
of transfer in a DMA device have been completed or that addresses corresponding to all
memory regions and alignments have been covered. Goal of the verification process is
to reach 100% coverage [5].

Alternatives to UVM include, e.g., formal verification techniques. However, while
UVM can be used with all industry-standard SystemVerilog simulators (including the
free Xsim from Xilinx), formal verification requires expensive additional tooling and
training, making UVM attractive especially for smaller companies.

Proposed Project

While working on the verification testbench of the research hardware component North-
cape [1], which is a novel byte-granular memory management unit, the author noticed
that UVM has two major practical shortcomings. First, due to the complexity of the
design and testbench, only between 10 and 100 tests per second and CPU core are com-
pleted for several components in the system. Second, due to poor distributions of the
randomized transactions, certain scenarios were never tested even after many transac-
tions. For example, the transaction has a boolean flag that distinguishes between valid
and an invalid bus transactions. For a valid bus transaction, a number of constraints on
the input data needs to be satisfied (for example, the access cannot over- or underflow
the corresponding buffer in memory) and a status code indicating success needs to be
returned. For an invalid bus transaction, the transaction needs to violate at least one
constraint for a valid transaction and an error needs to be indicated. In over 50,000
automatic tests, not a single invalid transaction was generated. The author has no way
of knowing whether there is an error in the constraints, causing the constraint solver to
only be able to generate valid transactions, or if he has simply not yet run enough test
cases. Either way, while the distribution of valid and invalid test cases should be close
to 50%, in practice it is heavily skewed towards valid transactions.

Thus, this project aims at addressing these two shortcomings of constrained-random
testing using a fuzzing approach. The envisioned contribution of the project is achieving
100% functional coverage with fewer tests than purely random generation. Also, the
author imagines that it should be possible to determine whether it is possible to reach
100% coverage using the provided constraints. Crucially, the input constraints already
built into the language and verification methodology can be used to generate a corpus of
valid inputs for the fuzzer. The fuzzer can use functional coverage as feedback. Instead
of crashes, the fuzzer has found a bug when the checker indicates abnormal behavior
of the DUT, when an assumption is violated or a timeout occurs (e.g., when the DUT
locked up). Thereby, the proposed system can be used as a drop-in replacement for
constrained-random testing, such that the existing methodology and test benches can
be reused.

The implementation of the approach can be built on top of the open-source simulator
Verilator, which supports most language constructs of SystemVerilog. There is ongoing



work targeting support of constrained-random testing in Verilator!, on top of which
the proposed system could be implemented and evaluated. Alternatively, the proposed
system could be built as plugin for Xilinx Xsim or a different commercial simulator.

The author is willing to offer Northcape and its UVM testbench as a DUT for eval-
uation of the approach. Alternatively, open source projects such as the CVA6 RISC-V
CPU? include a UVM testbench and can be used as a DUT.

Scope of the Project and Requirements

The author would like to emphasize that the proposed project is not primarily a hardware
project, but mostly a testing and software engineering project. It might be a good fit
especially for engineers with an interest in fuzzing and verification. The author believes
that this project might make a good master thesis. The author also believes that there
is the potential of building a product based on this approach, under the assumption that
inclusion of the fuzzer into a commercial-grade simulator like Xsim is possible.

State of the Art

The idea of generating new test cases based on coverage is not entirely new. However,
to the author’s knowledge, no paper has considered simply replacing the constrained-
random generation of transactions on its own, while keeping the rest of the UVM method-
ology in place. Instead, existing literature always tries to solve multiple problems at
once, e.g., generating constraints from scratch or using a different coverage metric than
human-generated functional coverage. Also, the explainability of (non) covered cases
seems to be understudied.

Trippel et al. use Verilator to generate a software model for a hardware component
and use AFL for fuzzing the software model [8]. They use edge coverage (in software)
as sole coverage metric and exclusively rely on assertions to detect errors of the DUT,
possibly missing complex bugs that cannot be modeled (or were forgotten to be modeled)
as assertion but would be caught by scoreboard and checker.

Dobis, Petersen, and Schoeberl implement a scheme similar to the proposed one, but
only targeting the Chisel HDL. Also, instead of relying on the existing constraints in the
testbench, they assume the existence of input files with exemplary valid inputs for the
generation of transactions in the fuzzer [2].

Laeufer et al. run their verification on FPGAs to decrease run time. They also generate
test suites with functional coverage models automatically instead of relying on human-
generated models, possibly missing domain-specific edge cases [4].

Guzey and Wang focus on automatic generation of input constraints, based on a
functional coverage model, possibly generating inputs that the DUT needs not accept
because they are invalid [3].

lhttps ://antmicro.com/blog/2024/03/introducing-constrained-randomization-in-verilator/
?https://github.com/openhwgroup/cvaé



Finally, Teplitsky, Metodi, and Azaria pursue the same idea of using existing con-
straints and functional coverage. They aim at achieving 100% coverage faster by care-
fully manipulating the output distributions of the constrained-random generator, but
continue relying on constrained-random test generation in principle [7].



Bibliography

(1]

2]

(3]

4]

(5]
(6]

7]

(8]

Eric Ackermann, Noah Mauthe, and Sven Bugiel. “Work-in-Progress: Northcape:
Embedded Real-Time Capability-Based Addressing”. In: 2024 IEEFE European Sym-
posium on Security and Privacy Workshops (EuroSE&PW). 2024.

Amelia Dobis, Tjark Petersen, and Martin Schoeberl. “Towards Functional Coverage-
Driven Fuzzing for Chisel Designs”. In: Workshop on Open-Source EDA Technology

(WOSET 2021). Technical University of Denmark, Nov. 4, 2021. poL: 10.3929/

ethz-b-000539444. URL: https://www.research-collection.ethz.ch/handle/

20.500.11850/539444 (visited on 05/28,/2024).

Onur Guzey and Li-C. Wang. “Coverage-Directed Test Generation through Auto-
matic Constraint Extraction”. In: 2007 IEEE International High Level Design Val-
idation and Test Workshop. 2007 IEEE International High Level Design Validation
and Test Workshop. Irvine, CA, USA: IEEE, 2007, pp. 151-158. 1SBN: 978-1-4244-
1480-2. por: 10.1109/HLDVT.2007.4392805. URL: http://ieeexplore.ieee.org/
document/4392805/ (visited on 07/15/2024).

Kevin Laeufer et al. “RFUZZ: Coverage-Directed Fuzz Testing of RTL on FP-
GAs”. In: 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). Nov. 2018, pp. 1-8. DOI: 10 . 1145 /3240765 . 3240842. URL: https :
//ieeexplore.ieee.org/abstract/document/8587711 (visited on 05/28/2024).

Ray Salemi. The UVM Primer: A Introduction to the Universal Verification Method-
ology. Breinigsville, PA: Ray Salemi, 2013. 190 pp. 1SBN: 978-0-9741649-3-9.

Chris Spear. SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features. Springer Science & Business Media, Apr. 22, 2008. 455 pp.
ISBN: 978-0-387-76530-3.

Marat Teplitsky, Amit Metodi, and Raz Azaria. “Coverage Driven Distribution of
Constrained Random Stimuli”. In: 2015. URL: https://www.semanticscholar.
org/paper/Coverage-Driven-Distribution-of-Constrained-Random-Teplitsky-
Metodi/dOeaf654fe6f4f80d2f9ddd20083eca037048d7b (visited on 07/15/2[]24).
Timothy Trippel et al. “Fuzzing Hardware Like Software”. In: 31st USENIX Security
Symposium (USENIX Security 22). 2022, pp. 3237-3254. 1SBN: 978-1-939133-31-1.

URL: https://www.usenix.org/conference/usenixsecurity22/presentation/
trippel (visited on 05/28/2024).



